]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Added a first implementation of the ABF elements, which are a
authoroliver <oliver@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 25 Apr 2006 19:05:53 +0000 (19:05 +0000)
committeroliver <oliver@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 25 Apr 2006 19:05:53 +0000 (19:05 +0000)
subspace of H_div.

git-svn-id: https://svn.dealii.org/trunk@12894 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/source/fe/fe_abf.cc [new file with mode: 0644]

diff --git a/deal.II/deal.II/source/fe/fe_abf.cc b/deal.II/deal.II/source/fe/fe_abf.cc
new file mode 100644 (file)
index 0000000..80f529a
--- /dev/null
@@ -0,0 +1,600 @@
+//---------------------------------------------------------------------------
+//    $Id$
+//    Version: $Name$
+//
+//    Copyright (C) 2003, 2004, 2005 by the deal.II authors
+//
+//    This file is subject to QPL and may not be  distributed
+//    without copyright and license information. Please refer
+//    to the file deal.II/doc/license.html for the  text  and
+//    further information on this license.
+//
+//---------------------------------------------------------------------------
+
+#include <base/quadrature.h>
+#include <base/quadrature_lib.h>
+#include <base/qprojector.h>
+#include <base/table.h>
+#include <grid/tria.h>
+#include <grid/tria_iterator.h>
+#include <dofs/dof_accessor.h>
+#include <fe/fe.h>
+#include <fe/mapping.h>
+#include <fe/fe_abf.h>
+#include <fe/fe_values.h>
+#include <fe/fe_tools.h>
+
+#ifdef HAVE_STD_STRINGSTREAM
+#  include <sstream>
+#else
+#  include <strstream>
+#endif
+
+#include <iostream>
+using namespace std;
+
+
+template <int dim>
+FE_ABF<dim>::FE_ABF (const unsigned int deg)
+               :
+               FE_PolyTensor<PolynomialsABF<dim>, dim> (
+                 deg,
+                 FiniteElementData<dim>(get_dpo_vector(deg),
+                                        dim, deg+1, FiniteElementData<dim>::Hdiv, 1),
+                 std::vector<bool>(PolynomialsABF<dim>::compute_n_pols(deg), true),
+                 std::vector<std::vector<bool> >(PolynomialsABF<dim>::compute_n_pols(deg),
+                                                 std::vector<bool>(dim,true))),
+               rt_order(deg)
+{
+  Assert (dim >= 2, ExcImpossibleInDim(dim));
+  const unsigned int n_dofs = this->dofs_per_cell;
+  
+  this->mapping_type = this->contravariant;
+                                  // First, initialize the
+                                  // generalized support points and
+                                  // quadrature weights, since they
+                                  // are required for interpolation.
+  initialize_support_points(deg);
+                                  // Now compute the inverse node
+                                  //matrix, generating the correct
+                                  //basis functions from the raw
+                                  //ones.
+  FullMatrix<double> M(n_dofs, n_dofs);
+  FETools::compute_node_matrix(M, *this);
+
+  M.print (std::cout);
+
+  this->inverse_node_matrix.reinit(n_dofs, n_dofs);
+  this->inverse_node_matrix.invert(M);
+                                  // From now on, the shape functions
+                                  // will be the correct ones, not
+                                  // the raw shape functions anymore.
+  
+
+                                  // initialize the various matrices
+  for (unsigned int i=0; i<GeometryInfo<dim>::children_per_cell; ++i)
+    {
+      this->prolongation[i].reinit (n_dofs, n_dofs);
+      this->restriction[i].reinit (n_dofs, n_dofs);
+    }
+
+  FETools::compute_embedding_matrices (*this, &this->prolongation[0]);
+  //  initialize_restriction ();
+
+  // TODO
+  std::vector<FullMatrix<double> >
+    face_embeddings(1<<(dim-1), FullMatrix<double>(this->dofs_per_face,
+                                                  this->dofs_per_face));
+  //FETools::compute_face_embedding_matrices(*this, &face_embeddings[0], 0, 0);
+  this->interface_constraints.reinit((1<<(dim-1)) * this->dofs_per_face,
+                                    this->dofs_per_face);
+  unsigned int target_row=0;
+  for (unsigned int d=0;d<face_embeddings.size();++d)
+    for (unsigned int i=0;i<face_embeddings[d].m();++i)
+      {
+       for (unsigned int j=0;j<face_embeddings[d].n();++j)
+         this->interface_constraints(target_row,j) = face_embeddings[d](i,j);
+       ++target_row;
+      }
+}
+
+
+
+template <int dim>
+std::string
+FE_ABF<dim>::get_name () const
+{
+                                  // note that the
+                                  // FETools::get_fe_from_name
+                                  // function depends on the
+                                  // particular format of the string
+                                  // this function returns, so they
+                                  // have to be kept in synch
+
+#ifdef HAVE_STD_STRINGSTREAM
+  std::ostringstream namebuf;
+#else
+  std::ostrstream namebuf;
+#endif
+  
+  namebuf << "FE_ABF<" << dim << ">(" << rt_order << ")";
+
+#ifndef HAVE_STD_STRINGSTREAM
+  namebuf << std::ends;
+#endif
+  return namebuf.str();
+}
+
+
+
+template <int dim>
+FiniteElement<dim> *
+FE_ABF<dim>::clone() const
+{
+  return new FE_ABF<dim>(rt_order);
+}
+
+
+//---------------------------------------------------------------------------
+// Auxiliary and internal functions
+//---------------------------------------------------------------------------
+
+
+#if deal_II_dimension == 1
+
+template <int dim>
+void
+FE_ABF<dim>::initialize_support_points (const unsigned int deg)
+{
+  return;
+  
+  Assert (false, ExcNotImplemented());
+  
+  QGauss<dim> cell_quadrature(deg+1);
+  const unsigned int n_interior_points
+    = (deg>0) ? cell_quadrature.n_quadrature_points : 0;
+  
+  this->generalized_support_points.resize (2 + n_interior_points);
+  
+                                  // Number of the point being entered
+  unsigned int current = 0;
+
+  
+  if (deg==0) return;
+
+  interior_weights.reinit(TableIndices<3>(2+n_interior_points, 0, dim));
+  
+  for (unsigned int k=0;k<cell_quadrature.n_quadrature_points;++k)
+    this->generalized_support_points[current++] = cell_quadrature.point(k);
+  
+  Assert (current == this->generalized_support_points.size(),
+         ExcInternalError());
+}
+
+#else
+
+// Version for 2d and higher. See above for 1d version
+template <int dim>
+void
+FE_ABF<dim>::initialize_support_points (const unsigned int deg)
+{
+  QGauss<dim> cell_quadrature(deg+2);
+  const unsigned int n_interior_points = cell_quadrature.n_quadrature_points;
+
+  unsigned int n_face_points = (dim>1) ? 1 : 0;
+                                  // compute (deg+1)^(dim-1)
+  for (unsigned int d=1;d<dim;++d)
+    n_face_points *= deg+1;
+
+  this->generalized_support_points.resize (GeometryInfo<dim>::faces_per_cell*n_face_points
+                                          + n_interior_points);
+  this->generalized_face_support_points.resize (n_face_points);
+
+
+  // These might be required when the faces contribution is computed
+  // Therefore they will be initialised at this point.
+  std::vector<AnisotropicPolynomials<dim>* > polynomials_abf(dim);
+
+  // Generate x_1^{i} x_2^{r+1} ...
+  for (unsigned int dd=0; dd<dim; ++dd)
+    {
+      std::vector<std::vector<Polynomials::Polynomial<double> > > poly(dim);
+      for (unsigned int d=0;d<dim;++d)
+       poly[d].push_back (Polynomials::Monomial<double> (deg+1));
+      poly[dd] = Polynomials::Monomial<double>::generate_complete_basis(deg);
+
+      polynomials_abf[dd] = new AnisotropicPolynomials<dim>(poly);
+    }
+
+                                  // Number of the point being entered
+  unsigned int current = 0;
+
+  if (dim>1)
+    {
+      QGauss<dim-1> face_points (deg+1);
+      TensorProductPolynomials<dim-1> legendre
+       = Polynomials::Legendre::generate_complete_basis(deg);
+
+      boundary_weights.reinit(n_face_points, legendre.n());
+      
+//       Assert (face_points.n_quadrature_points == this->dofs_per_face,
+//           ExcInternalError());
+      
+      for (unsigned int k=0;k<n_face_points;++k)
+       {
+         this->generalized_face_support_points[k] = face_points.point(k);
+                                          // Compute its quadrature
+                                          // contribution for each
+                                          // moment.
+         for (unsigned int i=0;i<legendre.n();++i)
+           {
+             boundary_weights(k, i)
+               = face_points.weight(k)
+               * legendre.compute_value(i, face_points.point(k));
+           }
+       }
+
+      Quadrature<dim> faces = QProjector<dim>::project_to_all_faces(face_points);
+      for (;current<GeometryInfo<dim>::faces_per_cell*n_face_points;
+          ++current)
+       {
+                                          // Enter the support point
+                                          // into the vector
+         this->generalized_support_points[current] = faces.point(current);
+       }
+
+
+      // Now initialise edge interior weights for the ABF elements.
+      // These are completely independent from the usual edge moments. They
+      // stem from applying the Gauss theorem to the nodal values, which
+      // was necessary to cast the ABF elements into the deal.II framework
+      // for vector valued elements.
+      boundary_weights_abf.reinit(faces.n_quadrature_points, polynomials_abf[0]->n() * dim);
+      for (unsigned int k=0;k < faces.n_quadrature_points;++k)
+       {
+         for (unsigned int i=0;i<polynomials_abf[0]->n() * dim;++i)
+           {
+             boundary_weights_abf(k,i) = polynomials_abf[i%dim]->
+               compute_value(i / dim, faces.point(k)) * faces.weight(k);
+           }
+       }
+    }
+  
+  // Create Legendre basis for the
+  // space D_xi Q_k
+  if (deg>0)
+    {
+      std::vector<AnisotropicPolynomials<dim>* > polynomials(dim);
+      
+      for (unsigned int dd=0;dd<dim;++dd)
+       {
+         std::vector<std::vector<Polynomials::Polynomial<double> > > poly(dim);
+         for (unsigned int d=0;d<dim;++d)
+           poly[d] = Polynomials::Legendre::generate_complete_basis(deg);
+         poly[dd] = Polynomials::Legendre::generate_complete_basis(deg-1);
+
+         polynomials[dd] = new AnisotropicPolynomials<dim>(poly);
+       }
+      
+      interior_weights.reinit(TableIndices<3>(n_interior_points, polynomials[0]->n(), dim));
+      
+      for (unsigned int k=0;k<cell_quadrature.n_quadrature_points;++k)
+       {
+         for (unsigned int i=0;i<polynomials[0]->n();++i)
+           for (unsigned int d=0;d<dim;++d)
+             interior_weights(k,i,d) = cell_quadrature.weight(k)
+               * polynomials[d]->compute_value(i,cell_quadrature.point(k));
+       }
+      
+      for (unsigned int d=0;d<dim;++d)
+       delete polynomials[d];
+    }
+  
+
+  // Decouple the creation of the generalized support points 
+  // from computation of interior weights.
+  for (unsigned int k=0;k<cell_quadrature.n_quadrature_points;++k)
+    this->generalized_support_points[current++] = cell_quadrature.point(k);
+
+  // Additional functionality for the ABF elements
+  // TODO: Here the canonical extension of the principle
+  // behind the ABF elements is implemented. It is unclear,
+  // if this really leads to the ABF spaces in 3D!
+  interior_weights_abf.reinit(TableIndices<3>(cell_quadrature.n_quadrature_points, 
+                                             polynomials_abf[0]->n() * dim, dim));
+  Tensor<1, dim> poly_grad;
+
+  for (unsigned int k=0;k<cell_quadrature.n_quadrature_points;++k)
+    {
+      for (unsigned int i=0;i<polynomials_abf[0]->n() * dim;++i)
+       {
+         poly_grad = polynomials_abf[i%dim]->compute_grad(i / dim,cell_quadrature.point(k))
+           * cell_quadrature.weight(k);
+         // The minus sign comes from the use of the Gauss theorem to replace the divergence.
+         for (unsigned int d=0;d<dim;++d)
+           interior_weights_abf(k,i,d) = -poly_grad[d];
+       }
+    }
+
+  for (unsigned int d=0;d<dim;++d)
+    delete polynomials_abf[d];
+
+  Assert (current == this->generalized_support_points.size(),
+         ExcInternalError());
+}
+
+#endif
+
+
+#if deal_II_dimension == 1
+
+template <>
+std::vector<unsigned int>
+FE_ABF<1>::get_dpo_vector (const unsigned int)
+{
+  Assert (false, ExcImpossibleInDim(1));
+  return std::vector<unsigned int>();
+}
+
+#endif
+
+
+template <int dim>
+std::vector<unsigned int>
+FE_ABF<dim>::get_dpo_vector (const unsigned int rt_order)
+{
+                                   // the element is face-based (not
+                                   // to be confused with George
+                                   // W. Bush's Faith Based
+                                   // Initiative...), and we have
+                                   // (rt_order+1)^(dim-1) DoFs per face
+  unsigned int dofs_per_face = 1;
+  for (unsigned int d=0; d<dim-1; ++d)
+    dofs_per_face *= rt_order+1;
+
+                                   // and then there are interior dofs
+  const unsigned int
+    interior_dofs = dim*(rt_order+1)*dofs_per_face;
+  
+  std::vector<unsigned int> dpo(dim+1);
+  dpo[dim-1] = dofs_per_face;
+  dpo[dim]   = interior_dofs;
+  
+  return dpo;
+}
+
+
+
+template <int dim>
+UpdateFlags
+FE_ABF<dim>::update_once (const UpdateFlags) const
+{
+                                  // even the values have to be
+                                  // computed on the real cell, so
+                                  // nothing can be done in advance
+  return update_default;
+}
+
+
+
+template <int dim>
+UpdateFlags
+FE_ABF<dim>::update_each (const UpdateFlags flags) const
+{
+  UpdateFlags out = update_default;
+
+
+  if (flags & update_values)
+    out |= update_values             | update_covariant_transformation
+                                     | update_contravariant_transformation 
+                                     | update_JxW_values;
+  if (flags & update_gradients)
+    out |= update_gradients          | update_covariant_transformation 
+                                     | update_contravariant_transformation
+                                     | update_JxW_values;
+  //TODO: Set update flags appropriately and figure out, how the second
+  // derivatives for the RT elements can be computed correctly.
+  if (flags & update_second_derivatives)
+    out |= update_second_derivatives | update_contravariant_transformation;
+
+  return out;
+}
+
+//---------------------------------------------------------------------------
+// Data field initialization
+//---------------------------------------------------------------------------
+
+
+
+
+template <int dim>
+unsigned int
+FE_ABF<dim>::n_base_elements () const
+{
+  return 1;
+}
+
+
+
+template <int dim>
+const FiniteElement<dim> &
+FE_ABF<dim>::base_element (const unsigned int index) const
+{
+  Assert (index==0, ExcIndexRange(index, 0, 1));
+  return *this;
+}
+
+
+
+template <int dim>
+unsigned int
+FE_ABF<dim>::element_multiplicity (const unsigned int index) const
+{
+  Assert (index==0, ExcIndexRange(index, 0, 1));
+  return 1;
+}
+
+
+
+template <int dim>
+bool
+FE_ABF<dim>::has_support_on_face (const unsigned int shape_index,
+                                            const unsigned int face_index) const
+{
+  Assert (shape_index < this->dofs_per_cell,
+         ExcIndexRange (shape_index, 0, this->dofs_per_cell));
+  Assert (face_index < GeometryInfo<dim>::faces_per_cell,
+         ExcIndexRange (face_index, 0, GeometryInfo<dim>::faces_per_cell));
+
+                                  // Return computed values if we
+                                  // know them easily. Otherwise, it
+                                  // is always safe to return true.
+  switch (rt_order)
+    {
+      case 0:
+      {
+        switch (dim)
+          {
+            case 2:
+            {
+                                               // only on the one
+                                               // non-adjacent face
+                                               // are the values
+                                               // actually zero. list
+                                               // these in a table
+              return (face_index != GeometryInfo<dim>::opposite_face[shape_index]);
+            }
+            
+            default:
+             return true;
+          };
+      };
+      
+      default:  // other rt_order
+       return true;
+    };
+  
+  return true;
+}
+
+
+
+template <int dim>
+void
+FE_ABF<dim>::interpolate(
+  std::vector<double>&,
+  const std::vector<double>&) const
+{
+  Assert(false, ExcNotImplemented());
+}
+
+
+
+template <int dim>
+void
+FE_ABF<dim>::interpolate(
+  std::vector<double>&    local_dofs,
+  const std::vector<Vector<double> >& values,
+  unsigned int offset) const
+{
+  Assert (values.size() == this->generalized_support_points.size(),
+         ExcDimensionMismatch(values.size(), this->generalized_support_points.size()));
+  Assert (local_dofs.size() == this->dofs_per_cell,
+         ExcDimensionMismatch(local_dofs.size(),this->dofs_per_cell));
+  Assert (values[0].size() >= offset+this->n_components(),
+         ExcDimensionMismatch(values[0].size(),offset+this->n_components()));
+
+  std::fill(local_dofs.begin(), local_dofs.end(), 0.);
+
+  const unsigned int n_face_points = boundary_weights.size(0);
+  for (unsigned int face=0;face<GeometryInfo<dim>::faces_per_cell;++face)
+    for (unsigned int k=0;k<n_face_points;++k)
+      for (unsigned int i=0;i<boundary_weights.size(1);++i)
+      {
+       local_dofs[i+face*this->dofs_per_face] += boundary_weights(k,i)
+                        * values[face*n_face_points+k](GeometryInfo<dim>::unit_normal_direction[face]+offset);
+      }
+  
+  const unsigned start_cell_dofs = GeometryInfo<dim>::faces_per_cell*this->dofs_per_face;
+  const unsigned start_cell_points = GeometryInfo<dim>::faces_per_cell*n_face_points;
+  
+  for (unsigned int k=0;k<interior_weights.size(0);++k)
+    for (unsigned int i=0;i<interior_weights.size(1);++i)
+      for (unsigned int d=0;d<dim;++d)
+       local_dofs[start_cell_dofs+i*dim+d] += interior_weights(k,i,d) * values[k+start_cell_points](d+offset);
+
+  //TODO: Insert missing code for ABF elements. (cf. other interpolate method)
+}
+
+
+template <int dim>
+void
+FE_ABF<dim>::interpolate(
+  std::vector<double>& local_dofs,
+  const VectorSlice<const std::vector<std::vector<double> > >& values) const
+{
+  Assert (values.size() == this->n_components(),
+         ExcDimensionMismatch(values.size(), this->n_components()));
+  Assert (values[0].size() == this->generalized_support_points.size(),
+         ExcDimensionMismatch(values[0].size(), this->generalized_support_points.size()));
+  Assert (local_dofs.size() == this->dofs_per_cell,
+         ExcDimensionMismatch(local_dofs.size(),this->dofs_per_cell));
+
+  std::fill(local_dofs.begin(), local_dofs.end(), 0.);
+
+  const unsigned int n_face_points = boundary_weights.size(0);
+  for (unsigned int face=0;face<GeometryInfo<dim>::faces_per_cell;++face)
+    for (unsigned int k=0;k<n_face_points;++k)
+      for (unsigned int i=0;i<boundary_weights.size(1);++i)
+      {
+       local_dofs[i+face*this->dofs_per_face] += boundary_weights(k,i)
+                        * values[GeometryInfo<dim>::unit_normal_direction[face]][face*n_face_points+k];
+      }
+  
+  const unsigned start_cell_dofs = GeometryInfo<dim>::faces_per_cell*this->dofs_per_face;
+  const unsigned start_cell_points = GeometryInfo<dim>::faces_per_cell*n_face_points;
+
+  for (unsigned int k=0;k<interior_weights.size(0);++k)
+    for (unsigned int i=0;i<interior_weights.size(1);++i)
+      for (unsigned int d=0;d<dim;++d)
+       local_dofs[start_cell_dofs+i*dim+d] += interior_weights(k,i,d) * values[d][k+start_cell_points];
+
+  const unsigned start_abf_dofs = start_cell_dofs + interior_weights.size(1) * dim;
+
+  // Cell integral of ABF terms
+  for (unsigned int k=0;k<interior_weights_abf.size(0);++k)
+    for (unsigned int i=0;i<interior_weights_abf.size(1);++i)
+      for (unsigned int d=0;d<dim;++d)
+       local_dofs[start_abf_dofs+i] += interior_weights_abf(k,i,d) * values[d][k+start_cell_points];
+
+  // Face integral of ABF terms
+  for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
+    {
+      double n_orient = (double) GeometryInfo<dim>::unit_normal_orientation[face];
+      for (unsigned int fp=0; fp < n_face_points; ++fp)
+       {
+         // TODO: Check what the face_orientation has to be in 3D
+         unsigned int k = QProjector<dim>::DataSetDescriptor::face (face, false, n_face_points);
+         for (unsigned int i=0; i<boundary_weights_abf.size(1); ++i)
+           local_dofs[start_abf_dofs+i] += n_orient * boundary_weights_abf(k + fp, i) 
+             * values[GeometryInfo<dim>::unit_normal_direction[face]][k + fp];
+       }
+    }
+
+  // TODO: Check if this "correction" can be removed.
+  for (unsigned int i=0; i<boundary_weights_abf.size(1); ++i)
+    if (fabs (local_dofs[start_abf_dofs+i]) < 1.0e-16)
+      local_dofs[start_abf_dofs+i] = 0.0;
+}
+
+
+template <int dim>
+unsigned int
+FE_ABF<dim>::memory_consumption () const
+{
+  Assert (false, ExcNotImplemented ());
+  return 0;
+}
+
+
+template class FE_ABF<deal_II_dimension>;

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.