asymmetries in adaptive computations is that only a certain fraction of cells
is refined in each step, which may lead to asymmetric meshes even if the
original coarse mesh was symmetric.
+</p>
+
+
+<p>
+Whether the computation is fully converged is a different matter. In order to
+see whether it is, we ran the program again with one more global refinement at
+the beginning and with the time step halved. This would have taken a very long
+time on a single machine, so we used our cluster again and ran it on 16
+processors (8 dual-processor machines) in parallel. The beginning of the output
+now looks like this:
+<code>
+<pre>
+Timestep 1 at time 0.5
+ Cycle 0:
+ Number of active cells: 29696 (by partition: 1862+1890+1866+1850+1864+1850+1858+1842+1911+1851+1911+1804+1854+1816+1839+1828)
+ Number of degrees of freedom: 113100 (by partition: 7089+7218+6978+6972+7110+6840+7119+7023+7542+7203+7068+6741+6921+6759+7464+7053)
+ Assembling system... norm of rhs is 1.05874e+10
+ Solver converged in 289 iterations.
+ Updating quadrature point data...
+ Cycle 1:
+ Number of active cells: 102097 (by partition: 6346+6478+6442+6570+6370+6483+6413+6376+6403+6195+6195+6195+6494+6571+6371+6195)
+ Number of degrees of freedom: 358875 (by partition: 22257+22161+22554+22482+21759+23361+23040+21609+22347+20937+21801+21678+24126+25149+21321+22293)
+ Assembling system... norm of rhs is 3.46364e+10
+ Solver converged in 249 iterations.
+ Updating quadrature point data...
+ Moving mesh...
+
+Timestep 2 at time 1
+ Assembling system... norm of rhs is 3.42269e+10
+ Solver converged in 248 iterations.
+ Updating quadrature point data...
+ Moving mesh...
+
+Timestep 3 at time 1.5
+ Assembling system... norm of rhs is 3.38229e+10
+ Solver converged in 247 iterations.
+ Updating quadrature point data...
+ Moving mesh...
+
+Timestep 4 at time 2
+ Assembling system... norm of rhs is 3.34247e+10
+ Solver converged in 247 iterations.
+ Updating quadrature point data...
+ Moving mesh...
+
+[...]
+
+Timestep 20 at time 10
+ Assembling system... norm of rhs is 3.2449e+10
+ Solver converged in 493 iterations.
+ Updating quadrature point data...
+ Moving mesh...
+</pre>
+</code>
+That's quite a good number of unknowns, given that we are in 3d. The output of
+this program are 16 files for each time step:
+<code>
+<pre>
+examples/step-18> ls -l solution-0001.000*
+-rw-r--r-- 1 bangerth mfw 4325219 Aug 11 09:44 solution-0001.0000-000.d2
+-rw-r--r-- 1 bangerth mfw 4454460 Aug 11 09:44 solution-0001.0000-001.d2
+-rw-r--r-- 1 bangerth mfw 4485242 Aug 11 09:43 solution-0001.0000-002.d2
+-rw-r--r-- 1 bangerth mfw 4517364 Aug 11 09:43 solution-0001.0000-003.d2
+-rw-r--r-- 1 bangerth mfw 4462829 Aug 11 09:43 solution-0001.0000-004.d2
+-rw-r--r-- 1 bangerth mfw 4482487 Aug 11 09:43 solution-0001.0000-005.d2
+-rw-r--r-- 1 bangerth mfw 4548619 Aug 11 09:43 solution-0001.0000-006.d2
+-rw-r--r-- 1 bangerth mfw 4522421 Aug 11 09:43 solution-0001.0000-007.d2
+-rw-r--r-- 1 bangerth mfw 4337529 Aug 11 09:43 solution-0001.0000-008.d2
+-rw-r--r-- 1 bangerth mfw 4163047 Aug 11 09:43 solution-0001.0000-009.d2
+-rw-r--r-- 1 bangerth mfw 4288247 Aug 11 09:43 solution-0001.0000-010.d2
+-rw-r--r-- 1 bangerth mfw 4350410 Aug 11 09:43 solution-0001.0000-011.d2
+-rw-r--r-- 1 bangerth mfw 4458427 Aug 11 09:43 solution-0001.0000-012.d2
+-rw-r--r-- 1 bangerth mfw 4466037 Aug 11 09:43 solution-0001.0000-013.d2
+-rw-r--r-- 1 bangerth mfw 4505679 Aug 11 09:44 solution-0001.0000-014.d2
+-rw-r--r-- 1 bangerth mfw 4340488 Aug 11 09:44 solution-0001.0000-015.d2
+</pre>
+</code>
+We merge and convert these 16 intermediate files into a single gmv file as
+follows:
+<code>
+<pre>
+examples/step-18> time ../step-19/step-19 solution-0001.0000-* -x gmv -o solution-0001.0000.gmv
+
+real 0m45.929s
+user 0m41.290s
+sys 0m0.990s
+examples/step-18> ls -l solution-0001.0000.gmv
+-rw-r--r-- 1 bangerth mfw 68925360 Aug 11 17:04 solution-0001.0000.gmv
+</pre>
+</code>
+
+<p>
+Doing so for all time steps, we obtain gmv files that we can visualize (albeit
+with some difficulty, due to their size gmv isn't exactly fast when plotting
+them). Here are first the mesh on which we compute as well as the partitioning
+for the 16 processors:
+</p>
+
+<table width="100%">
+ <tr width="100%">
+ <td width="49%">
+ <a href="step-18.data/parallel/solution-000mesh.png" target="_top">
+ <img src="step-18.data/parallel/solution-000mesh.png"
+ width="100%"></a>
+ </td>
+
+ <td width="49%">
+ <a href="step-18.data/parallel/solution-0002.p.png" target="_top">
+ <img src="step-18.data/parallel/solution-0002.p.png"
+ width="100%"></a>
+ </td>
+ </tr>
+</table>
+
+<p>
+Finally, here is the same output as we have shown before for the much smaller
+sequential case:
+</p>
+
+<table width="100%">
+ <tr width="100%">
+ <td width="33%">
+ <a href="step-18.data/parallel/solution-0002.s.png" target="_top">
+ <img src="step-18.data/parallel/solution-0002.s.png"
+ width="100%"></a>
+ Time = 2
+ </td>
+
+ <td width="33%">
+ <a href="step-18.data/parallel/solution-0005.s.png" target="_top">
+ <img src="step-18.data/parallel/solution-0005.s.png"
+ width="100%"></a>
+ Time = 5
+ </td>
+
+ <td width="33%">
+ <a href="step-18.data/parallel/solution-0007.s.png" target="_top">
+ <img src="step-18.data/parallel/solution-0007.s.png"
+ width="100%"></a>
+ Time = 7
+ </td>
+ </tr>
+
+ <tr width="100%">
+ <td width="33%">
+ <a href="step-18.data/parallel/solution-0008.s.png" target="_top">
+ <img src="step-18.data/parallel/solution-0008.s.png"
+ width="100%"></a>
+ Time = 8
+ </td>
+
+ <td width="33%">
+ <a href="step-18.data/parallel/solution-0009.s.png" target="_top">
+ <img src="step-18.data/parallel/solution-0009.s.png"
+ width="100%"></a>
+ Time = 9
+ </td>
+
+ <td width="33%">
+ <a href="step-18.data/parallel/solution-0010.s.png" target="_top">
+ <img src="step-18.data/parallel/solution-0010.s.png"
+ width="100%"></a>
+ Time = 10
+ </td>
+ </tr>
+</table>
+
+<p>
+If one compares this with the previous run, the results are qualitatively
+similar, but quantitatively definitely different. The previous computation was
+therefore certainly not converged, though we can't say for sure anything about
+the present one. One would need an even finer computation to find out. However,
+the point may be moot: looking at the last picture in detail (click on it to
+see it in larger), it is pretty obvious that not only is the linear small
+deformation model we chose completely inadequate, but for a realistic
+simulation we would also need to make sure that the body does not intersects
+itself during deformation. Without such a formulation we cannot expect anything
+that make sense, even if it produces nice pictures!
+</p>