--- /dev/null
+/* ---------------------------------------------------------------------
+ *
+ * Copyright (C) 2016 by the deal.II authors
+ *
+ * This file is part of the deal.II library.
+ *
+ * The deal.II library is free software; you can use it, redistribute
+ * it, and/or modify it under the terms of the GNU Lesser General
+ * Public License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ * The full text of the license can be found in the file LICENSE at
+ * the top level of the deal.II distribution.
+ *
+ * ---------------------------------------------------------------------
+ */
+
+// Same as step-16-50, but use Jacobi smoother at the coarsest grid via MGCoarseGridApplySmoother.
+// In this particular case, the number of iterations untill convergence is
+// exactly the same as for MGCoarseGridLACIteration.
+
+#include "../tests.h"
+
+#include <deal.II/base/quadrature_lib.h>
+#include <deal.II/base/function.h>
+#include <deal.II/base/logstream.h>
+#include <deal.II/base/utilities.h>
+#include <deal.II/base/conditional_ostream.h>
+
+#include <deal.II/lac/constraint_matrix.h>
+#include <deal.II/lac/vector.h>
+#include <deal.II/lac/full_matrix.h>
+#include <deal.II/lac/sparse_matrix.h>
+#include <deal.II/lac/solver_cg.h>
+#include <deal.II/lac/solver_gmres.h>
+#include <deal.II/lac/precondition.h>
+
+#include <deal.II/grid/tria.h>
+#include <deal.II/grid/tria_accessor.h>
+#include <deal.II/grid/tria_iterator.h>
+#include <deal.II/grid/grid_generator.h>
+#include <deal.II/grid/grid_out.h>
+#include <deal.II/grid/grid_refinement.h>
+#include <deal.II/grid/tria_boundary_lib.h>
+
+#include <deal.II/dofs/dof_accessor.h>
+#include <deal.II/dofs/dof_tools.h>
+
+#include <deal.II/fe/fe_q.h>
+#include <deal.II/fe/fe_values.h>
+
+#include <deal.II/numerics/vector_tools.h>
+#include <deal.II/numerics/data_out.h>
+#include <deal.II/numerics/error_estimator.h>
+
+#include <deal.II/base/index_set.h>
+#include <deal.II/distributed/tria.h>
+#include <deal.II/distributed/grid_refinement.h>
+
+#include <deal.II/multigrid/mg_constrained_dofs.h>
+#include <deal.II/multigrid/multigrid.h>
+#include <deal.II/multigrid/mg_transfer.h>
+#include <deal.II/multigrid/mg_tools.h>
+#include <deal.II/multigrid/mg_coarse.h>
+#include <deal.II/multigrid/mg_smoother.h>
+#include <deal.II/multigrid/mg_matrix.h>
+
+
+#include <deal.II/lac/generic_linear_algebra.h>
+
+
+namespace LA
+{
+#ifdef USE_PETSC_LA
+ using namespace dealii::LinearAlgebraPETSc;
+#else
+ using namespace dealii::LinearAlgebraTrilinos;
+#endif
+}
+
+#include <iostream>
+#include <fstream>
+#include <sstream>
+
+namespace Step50
+{
+ using namespace dealii;
+
+
+
+ template <int dim>
+ class LaplaceProblem
+ {
+ public:
+ LaplaceProblem (const unsigned int deg);
+ void run ();
+
+ private:
+ void setup_system ();
+ void assemble_system ();
+ void assemble_multigrid ();
+ void solve ();
+ void refine_grid ();
+
+ parallel::distributed::Triangulation<dim> triangulation;
+ FE_Q<dim> fe;
+ DoFHandler<dim> mg_dof_handler;
+
+ typedef LA::MPI::SparseMatrix matrix_t;
+ typedef LA::MPI::Vector vector_t;
+
+ matrix_t system_matrix;
+
+ IndexSet locally_relevant_set;
+
+ ConstraintMatrix hanging_node_constraints;
+ ConstraintMatrix constraints;
+
+ vector_t solution;
+ vector_t system_rhs;
+
+ const unsigned int degree;
+
+ MGLevelObject<matrix_t> mg_matrices;
+ MGLevelObject<matrix_t> mg_interface_matrices;
+ MGConstrainedDoFs mg_constrained_dofs;
+ };
+
+
+
+
+
+ template <int dim>
+ class Coefficient : public Function<dim>
+ {
+ public:
+ Coefficient () : Function<dim>() {}
+
+ virtual double value (const Point<dim> &p,
+ const unsigned int component = 0) const;
+
+ virtual void value_list (const std::vector<Point<dim> > &points,
+ std::vector<double> &values,
+ const unsigned int component = 0) const;
+ };
+
+
+
+ template <int dim>
+ double Coefficient<dim>::value (const Point<dim> &p,
+ const unsigned int) const
+ {
+ if (p.square() < 0.5*0.5)
+ return 5;
+ else
+ return 1;
+ }
+
+
+
+ template <int dim>
+ void Coefficient<dim>::value_list (const std::vector<Point<dim> > &points,
+ std::vector<double> &values,
+ const unsigned int component) const
+ {
+ const unsigned int n_points = points.size();
+
+ Assert (values.size() == n_points,
+ ExcDimensionMismatch (values.size(), n_points));
+
+ Assert (component == 0,
+ ExcIndexRange (component, 0, 1));
+
+ for (unsigned int i=0; i<n_points; ++i)
+ values[i] = Coefficient<dim>::value (points[i]);
+ }
+
+
+
+
+ template <int dim>
+ LaplaceProblem<dim>::LaplaceProblem (const unsigned int degree)
+ :
+ triangulation (MPI_COMM_WORLD,Triangulation<dim>::
+ limit_level_difference_at_vertices,
+ parallel::distributed::Triangulation<dim>::construct_multigrid_hierarchy),
+ fe (degree),
+ mg_dof_handler (triangulation),
+ degree(degree)
+ {}
+
+
+
+ template <int dim>
+ void LaplaceProblem<dim>::setup_system ()
+ {
+ mg_dof_handler.distribute_dofs (fe);
+ mg_dof_handler.distribute_mg_dofs (fe);
+
+ DoFTools::extract_locally_relevant_dofs (mg_dof_handler,
+ locally_relevant_set);
+
+ solution.reinit(mg_dof_handler.locally_owned_dofs(), MPI_COMM_WORLD);
+ system_rhs.reinit(mg_dof_handler.locally_owned_dofs(), MPI_COMM_WORLD);
+
+ constraints.reinit (locally_relevant_set);
+ hanging_node_constraints.reinit (locally_relevant_set);
+ DoFTools::make_hanging_node_constraints (mg_dof_handler, hanging_node_constraints);
+ DoFTools::make_hanging_node_constraints (mg_dof_handler, constraints);
+
+ typename FunctionMap<dim>::type dirichlet_boundary;
+ ZeroFunction<dim> homogeneous_dirichlet_bc;
+ dirichlet_boundary[0] = &homogeneous_dirichlet_bc;
+ VectorTools::interpolate_boundary_values (mg_dof_handler,
+ dirichlet_boundary,
+ constraints);
+ constraints.close ();
+ hanging_node_constraints.close ();
+
+ DynamicSparsityPattern dsp(mg_dof_handler.n_dofs(), mg_dof_handler.n_dofs());
+ DoFTools::make_sparsity_pattern (mg_dof_handler, dsp, constraints);
+ system_matrix.reinit (mg_dof_handler.locally_owned_dofs(), dsp, MPI_COMM_WORLD, true);
+
+
+ mg_constrained_dofs.clear();
+ mg_constrained_dofs.initialize(mg_dof_handler, dirichlet_boundary);
+
+
+ const unsigned int n_levels = triangulation.n_global_levels();
+
+ mg_interface_matrices.resize(0, n_levels-1);
+ mg_interface_matrices.clear_elements ();
+ mg_matrices.resize(0, n_levels-1);
+ mg_matrices.clear_elements ();
+
+ for (unsigned int level=0; level<n_levels; ++level)
+ {
+ DynamicSparsityPattern dsp(mg_dof_handler.n_dofs(level),
+ mg_dof_handler.n_dofs(level));
+ MGTools::make_sparsity_pattern(mg_dof_handler, dsp, level);
+
+ mg_matrices[level].reinit(mg_dof_handler.locally_owned_mg_dofs(level),
+ mg_dof_handler.locally_owned_mg_dofs(level),
+ dsp,
+ MPI_COMM_WORLD, true);
+
+ mg_interface_matrices[level].reinit(mg_dof_handler.locally_owned_mg_dofs(level),
+ mg_dof_handler.locally_owned_mg_dofs(level),
+ dsp,
+ MPI_COMM_WORLD, true);
+ }
+ }
+
+
+
+ template <int dim>
+ void LaplaceProblem<dim>::assemble_system ()
+ {
+ const QGauss<dim> quadrature_formula(degree+1);
+
+ FEValues<dim> fe_values (fe, quadrature_formula,
+ update_values | update_gradients |
+ update_quadrature_points | update_JxW_values);
+
+ const unsigned int dofs_per_cell = fe.dofs_per_cell;
+ const unsigned int n_q_points = quadrature_formula.size();
+
+ FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);
+ Vector<double> cell_rhs (dofs_per_cell);
+
+ std::vector<types::global_dof_index> local_dof_indices (dofs_per_cell);
+
+ const Coefficient<dim> coefficient;
+ std::vector<double> coefficient_values (n_q_points);
+
+ typename DoFHandler<dim>::active_cell_iterator
+ cell = mg_dof_handler.begin_active(),
+ endc = mg_dof_handler.end();
+ for (; cell!=endc; ++cell)
+ if (cell->is_locally_owned())
+ {
+ cell_matrix = 0;
+ cell_rhs = 0;
+
+ fe_values.reinit (cell);
+
+ coefficient.value_list (fe_values.get_quadrature_points(),
+ coefficient_values);
+
+ for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+ for (unsigned int i=0; i<dofs_per_cell; ++i)
+ {
+ for (unsigned int j=0; j<dofs_per_cell; ++j)
+ cell_matrix(i,j) += (coefficient_values[q_point] *
+ fe_values.shape_grad(i,q_point) *
+ fe_values.shape_grad(j,q_point) *
+ fe_values.JxW(q_point));
+
+ cell_rhs(i) += (fe_values.shape_value(i,q_point) *
+ 10.0 *
+ fe_values.JxW(q_point));
+ }
+
+ cell->get_dof_indices (local_dof_indices);
+ constraints.distribute_local_to_global (cell_matrix, cell_rhs,
+ local_dof_indices,
+ system_matrix, system_rhs);
+ }
+
+ system_matrix.compress(VectorOperation::add);
+ system_rhs.compress(VectorOperation::add);
+ }
+
+
+
+ template <int dim>
+ void LaplaceProblem<dim>::assemble_multigrid ()
+ {
+ QGauss<dim> quadrature_formula(1+degree);
+
+ FEValues<dim> fe_values (fe, quadrature_formula,
+ update_values | update_gradients |
+ update_quadrature_points | update_JxW_values);
+
+ const unsigned int dofs_per_cell = fe.dofs_per_cell;
+ const unsigned int n_q_points = quadrature_formula.size();
+
+ FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);
+
+ std::vector<types::global_dof_index> local_dof_indices (dofs_per_cell);
+
+ const Coefficient<dim> coefficient;
+ std::vector<double> coefficient_values (n_q_points);
+
+
+
+ std::vector<ConstraintMatrix> boundary_constraints (triangulation.n_global_levels());
+ ConstraintMatrix empty_constraints;
+ for (unsigned int level=0; level<triangulation.n_global_levels(); ++level)
+ {
+ IndexSet dofset;
+ DoFTools::extract_locally_relevant_level_dofs (mg_dof_handler, level, dofset);
+ boundary_constraints[level].reinit(dofset);
+ boundary_constraints[level].add_lines (mg_constrained_dofs.get_refinement_edge_indices(level));
+ boundary_constraints[level].add_lines (mg_constrained_dofs.get_boundary_indices(level));
+
+ boundary_constraints[level].close ();
+ }
+
+ typename DoFHandler<dim>::cell_iterator cell = mg_dof_handler.begin(),
+ endc = mg_dof_handler.end();
+
+ for (; cell!=endc; ++cell)
+ if (cell->level_subdomain_id()==triangulation.locally_owned_subdomain())
+ {
+ cell_matrix = 0;
+ fe_values.reinit (cell);
+
+ coefficient.value_list (fe_values.get_quadrature_points(),
+ coefficient_values);
+
+ for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+ for (unsigned int i=0; i<dofs_per_cell; ++i)
+ for (unsigned int j=0; j<dofs_per_cell; ++j)
+ cell_matrix(i,j) += (coefficient_values[q_point] *
+ fe_values.shape_grad(i,q_point) *
+ fe_values.shape_grad(j,q_point) *
+ fe_values.JxW(q_point));
+
+ cell->get_mg_dof_indices (local_dof_indices);
+
+ boundary_constraints[cell->level()]
+ .distribute_local_to_global (cell_matrix,
+ local_dof_indices,
+ mg_matrices[cell->level()]);
+
+
+ const IndexSet &interface_dofs_on_level
+ = mg_constrained_dofs.get_refinement_edge_indices(cell->level());
+ const unsigned int lvl = cell->level();
+
+ for (unsigned int i=0; i<dofs_per_cell; ++i)
+ for (unsigned int j=0; j<dofs_per_cell; ++j)
+ if (interface_dofs_on_level.is_element(local_dof_indices[i]) // at_refinement_edge(i)
+ &&
+ !interface_dofs_on_level.is_element(local_dof_indices[j]) // !at_refinement_edge(j)
+ &&
+ (
+ (!mg_constrained_dofs.is_boundary_index(lvl, local_dof_indices[i])
+ &&
+ !mg_constrained_dofs.is_boundary_index(lvl, local_dof_indices[j])
+ ) // ( !boundary(i) && !boundary(j) )
+ ||
+ (
+ mg_constrained_dofs.is_boundary_index(lvl, local_dof_indices[i])
+ &&
+ local_dof_indices[i]==local_dof_indices[j]
+ ) // ( boundary(i) && boundary(j) && i==j )
+ )
+ )
+ {
+ }
+ else
+ {
+ cell_matrix(i,j) = 0;
+ }
+
+
+ empty_constraints
+ .distribute_local_to_global (cell_matrix,
+ local_dof_indices,
+ mg_interface_matrices[cell->level()]);
+ }
+
+ for (unsigned int i=0; i<triangulation.n_global_levels(); ++i)
+ {
+ mg_matrices[i].compress(VectorOperation::add);
+ mg_interface_matrices[i].compress(VectorOperation::add);
+ }
+ }
+
+
+
+
+ template <int dim>
+ void LaplaceProblem<dim>::solve ()
+ {
+ MGTransferPrebuilt<vector_t> mg_transfer(hanging_node_constraints, mg_constrained_dofs);
+ mg_transfer.build_matrices(mg_dof_handler);
+
+ // pre and post smoothers:
+ typedef LA::MPI::PreconditionJacobi Smoother;
+ MGSmootherPrecondition<matrix_t, Smoother, vector_t> mg_smoother;
+ mg_smoother.initialize(mg_matrices, Smoother::AdditionalData(0.5));
+ mg_smoother.set_steps(2);
+
+ // coarse grid solver:
+ MGSmootherPrecondition<matrix_t, Smoother, vector_t> mg_coase_grid_smoother;
+ mg_coase_grid_smoother.initialize(mg_matrices, Smoother::AdditionalData(0.5));
+ mg_coase_grid_smoother.set_steps(2);
+ mg_coase_grid_smoother.set_symmetric(true);
+ MGCoarseGridApplySmoother<vector_t> coarse_grid_solver(mg_coase_grid_smoother);
+
+
+ mg::Matrix<vector_t> mg_matrix(mg_matrices);
+ mg::Matrix<vector_t> mg_interface_up(mg_interface_matrices);
+ mg::Matrix<vector_t> mg_interface_down(mg_interface_matrices);
+
+ Multigrid<vector_t > mg(mg_dof_handler,
+ mg_matrix,
+ coarse_grid_solver,
+ mg_transfer,
+ mg_smoother,
+ mg_smoother);
+ mg.set_edge_matrices(mg_interface_down, mg_interface_up);
+
+ PreconditionMG<dim, vector_t, MGTransferPrebuilt<vector_t> >
+ preconditioner(mg_dof_handler, mg, mg_transfer);
+
+
+ SolverControl solver_control (500, 1e-8*system_rhs.l2_norm(), false);
+ SolverCG<vector_t> solver (solver_control);
+
+ solution = 0;
+ solver.solve (system_matrix, solution, system_rhs,
+ preconditioner);
+ constraints.distribute (solution);
+ }
+
+
+
+
+ template <int dim>
+ void LaplaceProblem<dim>::refine_grid ()
+ {
+ Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
+
+ LA::MPI::Vector temp_solution;
+ temp_solution.reinit(locally_relevant_set, MPI_COMM_WORLD);
+ temp_solution = solution;
+
+ KellyErrorEstimator<dim>::estimate (static_cast<DoFHandler<dim>&>(mg_dof_handler),
+ QGauss<dim-1>(degree+1),
+ typename FunctionMap<dim>::type(),
+ temp_solution,
+ estimated_error_per_cell);
+
+ const double threshold = 0.6 * Utilities::MPI::max(estimated_error_per_cell.linfty_norm(),MPI_COMM_WORLD);
+ GridRefinement::refine (triangulation, estimated_error_per_cell, threshold);
+
+ for (typename Triangulation<dim>::active_cell_iterator
+ cell = triangulation.begin_active();
+ cell != triangulation.end(); ++cell)
+ if (cell->subdomain_id() != triangulation.locally_owned_subdomain())
+ {
+ cell->clear_refine_flag ();
+ cell->clear_coarsen_flag ();
+ }
+
+ triangulation.execute_coarsening_and_refinement ();
+ }
+
+ template <int dim>
+ void LaplaceProblem<dim>::run ()
+ {
+ for (unsigned int cycle=0; cycle<5; ++cycle)
+ {
+ deallog << "Cycle " << cycle << ':' << std::endl;
+
+ if (cycle == 0)
+ {
+ GridGenerator::hyper_cube (triangulation);
+
+ triangulation.refine_global (4);
+ }
+ else
+ refine_grid ();
+
+ deallog << " Number of active cells: "
+ << triangulation.n_global_active_cells()
+ << std::endl;
+
+ setup_system ();
+
+ deallog << " Number of degrees of freedom: "
+ << mg_dof_handler.n_dofs()
+ << " (by level: ";
+ for (unsigned int level=0; level<triangulation.n_global_levels(); ++level)
+ deallog << mg_dof_handler.n_dofs(level)
+ << (level == triangulation.n_global_levels()-1
+ ? ")" : ", ");
+ deallog << std::endl;
+
+ assemble_system ();
+ assemble_multigrid ();
+
+ solve ();
+ }
+ }
+}
+
+
+int main (int argc, char *argv[])
+{
+ dealii::Utilities::MPI::MPI_InitFinalize mpi_initialization(argc, argv, 1);
+
+ mpi_initlog();
+
+ try
+ {
+ using namespace dealii;
+ using namespace Step50;
+
+ LaplaceProblem<2> laplace_problem(1/*degree*/);
+ laplace_problem.run ();
+ }
+ catch (std::exception &exc)
+ {
+ std::cerr << std::endl << std::endl
+ << "----------------------------------------------------"
+ << std::endl;
+ std::cerr << "Exception on processing: " << std::endl
+ << exc.what() << std::endl
+ << "Aborting!" << std::endl
+ << "----------------------------------------------------"
+ << std::endl;
+ throw;
+ }
+ catch (...)
+ {
+ std::cerr << std::endl << std::endl
+ << "----------------------------------------------------"
+ << std::endl;
+ std::cerr << "Unknown exception!" << std::endl
+ << "Aborting!" << std::endl
+ << "----------------------------------------------------"
+ << std::endl;
+ throw;
+ }
+
+ return 0;
+}