]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Rename a few things. Probably won't compile, but will fix in a minute on a system...
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Mon, 12 May 2008 18:54:02 +0000 (18:54 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Mon, 12 May 2008 18:54:02 +0000 (18:54 +0000)
git-svn-id: https://svn.dealii.org/trunk@16077 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-33/step-33.cc

index 2528bb9b4150ef818b6956bccf1b10ed90332d4f..9726a40b87242650c0e31b77c5dd1b706cbd8537 100644 (file)
@@ -112,9 +112,10 @@ using namespace dealii;
                                 // structure to depend on the space
                                 // dimension, which we in our usual way
                                 // introduce using a template parameter:
-namespace EulerEquations
+template <int dim>
+struct EulerEquations
 {
-                                  // First a few inline functions that
+                                  // First a few variables that
                                   // describe the various components of our
                                   // solution vector in a generic way. This
                                   // includes the number of components in the
@@ -127,134 +128,128 @@ namespace EulerEquations
                                   // vector of the first momentum component,
                                   // the density component, and the energy
                                   // density component. Note that all these
-                                  // numbers depend on the space dimension;
+                                  // %numbers depend on the space dimension;
                                   // defining them in a generic way (rather
                                   // than by implicit convention) makes our
                                   // code more flexible and makes it easier
                                   // to later extend it, for example by
                                   // adding more components to the equations.
-  template <int dim>
-  inline
-  unsigned int n_components ()
-  {
-    return dim + 2;
-  }
-
-  template <int dim>
-  inline
-  unsigned int first_momentum_component ()
-  {
-    return 0;
-  }
-
-  template <int dim>
-  inline
-  unsigned int density_component ()
-  {
-    return dim;
-  }
-
-  template <int dim>
-  inline
-  unsigned int energy_component ()
-  {
-    return dim+1;
-  }
-  
-
-                                  // Next, we define the gas constant.  This
-                                  // value is representative of a gas that
-                                  // consists of molecules composed of two
-                                  // atoms, such as air which consists up to
-                                  // small traces almost entirely of $N_2$
+    static const unsigned int n_components             = dim + 2;
+    static const unsigned int first_momentum_component = 0;
+    static const unsigned int density_component        = dim;
+    static const unsigned int energy_component         = dim+1;
+
+                                  // Next, we define the gas
+                                  // constant. We will set it to 1.4
+                                  // in its definition immediately
+                                  // following the declaration of
+                                  // this class (unlike integer
+                                  // variables, like the ones above,
+                                  // static const floating point
+                                  // member variables cannot be
+                                  // initialized within the class
+                                  // declaration in C++). This value
+                                  // of 1.4 is representative of a
+                                  // gas that consists of molecules
+                                  // composed of two atoms, such as
+                                  // air which consists up to small
+                                  // traces almost entirely of $N_2$
                                   // and $O_2$.
-  const double gas_gamma = 1.4;
-}
+    static const double gas_gamma;
+
+                                    // We define the flux function $F(W)$ as one large
+                                    // matrix.  Each row of this matrix
+                                    // represents a scalar conservation law for
+                                    // the component in that row.  We templatize
+                                    // the numerical type of the flux function so
+                                    // that we may use the automatic
+                                    // differentiation type here.  The flux
+                                    // functions are defined in terms of the
+                                    // conserved variables $\rho w_0, \dots, \rho
+                                    // w_{d-1}, \rho, E$, so they do not look
+                                    // exactly like the Euler equations one is
+                                    // used to seeing.  We evaluate the flux at a
+                                    // single quadrature point.
+    template <typename number>
+    static
+    void flux_matrix(number (&flux)[n_components][dim],
+                    const std::vector<number> &W)
+      {
+
+                                        // Pressure is a dependent variable: $p = 
+                                        // (\gas_gamma - 1)(E-\frac{1}{2} \rho |v|^2)$.
+       number rho_normVsqr;
+       for (unsigned int d=0; d<dim; ++d)
+         rho_normVsqr += W[d]*W[d];
+                                        // Since W are $\rho v$, we
+                                        // get a $\rho^2$ in the
+                                        // numerator, so dividing a
+                                        // $\rho$ out gives the
+                                        // desired $ \rho |v|^2$.
+       rho_normVsqr /= W[density_component];
+
+       number pressure = (gas_gamma-1.0)*(W[energy_component] - number(0.5)*(rho_normVsqr));
+
+                                        // We compute the momentum terms.  We divide by the
+                                        // density here to get $v_i \rho v_j$
+       for (unsigned int d = 0; d < dim; d++)
+         {
+           for (unsigned int d1 = 0; d1 < dim; d1++)
+             flux[d][d1] = W[d]*W[d1]/W[density_component];
+         
+                                            // The pressure contribution, along the diagonal:
+           flux[d][d] += pressure;
+                                            // Advection/conservation of density:
+           flux[density_component][d] = W[d]; 
+                                            // And, lastly, conservation of energy.
+           flux[energy_component][d] = W[d]/W[density_component]*
+                                       (W[energy_component] + pressure); // energy
+         }
+      }
 
-using namespace EulerEquations;
-
-
-                                // We define the flux functions as one large
-                                // matrix.  Each row of this matrix
-                                // represents a scalar conservation law for
-                                // the component in that row.  We template
-                                // the numerical type of the flux function so
-                                // that we may use the automatic
-                                // differentiation type here.  The flux
-                                // functions are defined in terms of the
-                                // conserved variables $\rho w_0, \dots, \rho
-                                // w_{d-1}, \rho, E$, so they do not look
-                                // exactly like the Euler equations one is
-                                // used to seeing.  We evaluate the flux at a
-                                // single quadrature point.
-template <int dim, typename number>
-void Flux(std::vector<std::vector<number> >  &flux, 
-          const Point<dim> &/*point*/,
-          const std::vector<number> &W)
-{
 
-                                  // Pressure is a dependent variable: $p = 
-                                  // (\gas_gamma - 1)(E-\frac{1}{2} \rho |v|^2)$.
-  number rho_normVsqr;
-  for (unsigned int d0 = 0; d0 < dim; d0++)
-    rho_normVsqr += W[d0]*W[d0];
-                                  // Since W are $\rho v$, we get a $\rho^2$ in the
-                                  // numerator, so dividing a $\rho$ out gives the desired $ \rho |v|^2$.
-  rho_normVsqr /= W[density_component<dim>()];
-
-  number pressure = (gas_gamma-1.0)*(W[energy_component<dim>()] - number(0.5)*(rho_normVsqr));
-
-                                  // We compute the momentum terms.  We divide by the
-                                  // density here to get $v_i \rho v_j$
-  for (unsigned int d = 0; d < dim; d++) {
-    for (unsigned int d1 = 0; d1 < dim; d1++) {
-      flux[d][d1] = W[d]*W[d1]/W[density_component<dim>()];
+                                    // On the boundaries of the domain and across hanging nodes we use
+                                    // a numerical flux function to enforce boundary conditions.  This routine
+                                    // is the basic Lax-Friedrich's flux with a stabilization parameter
+                                    // $\alpha$.
+    template <typename number>
+    void LFNumFlux(std::vector<std::vector<Sacado::Fad::DFad<double> > > &nflux,
+                  const std::vector<Point<dim> > &points, 
+                  const std::vector<Point<dim> > &normals,
+                  const std::vector<std::vector<number> > &Wplus,
+                  const std::vector<std::vector<number> > &Wminus,
+                  double alpha)
+      {
+       const unsigned int n_q_points = points.size();
+      
+                                        // We evaluate the flux at each of the quadrature points.
+       for (unsigned int q = 0; q < n_q_points; q++)
+         {
+           Sacado::Fad::DFad<double> iflux[n_components][dim];
+           Sacado::Fad::DFad<double> oflux[n_components][dim];
+         
+           flux_matrix(iflux, Wplus[q]);
+           flux_matrix(oflux, Wminus[q]);
+         
+           for (unsigned int di=0; di<n_components; ++di)
+             {
+               nflux[q][di] = 0;
+               for (unsigned int d=0; d<dim; ++d) 
+                 nflux[q][di] += 0.5*(iflux[di][d] + oflux[di][d])*normals[q](d);
+             
+               nflux[q][di] += 0.5*alpha*(Wplus[q][di] - Wminus[q][di]);
+             }
+         }
     }
-                                    // The pressure contribution, along the diagonal:
-    flux[d][d] += pressure;
-                                    // Advection/conservation of density:
-    flux[density_component<dim>()][d] = W[d]; 
-                                    // And, lastly, conservation of energy.
-    flux[energy_component<dim>()][d] = W[d]/W[density_component<dim>()]*
-                         (W[energy_component<dim>()] + pressure); // energy
-  }
-}
+};
+    
 
-                                // On the boundaries of the domain and across `hanging nodes` we use
-                                // a numerical flux function to enforce boundary conditions.  This routine
-                                // is the basic Lax-Friedrich's flux with a stabilization parameter
-                                // $\alpha$.
-template <typename number, int dim>
-void LFNumFlux(
-  std::vector<std::vector<Sacado::Fad::DFad<double> > > &nflux,
-  const std::vector<Point<dim> > &points, 
-  const std::vector<Point<dim> > &normals,
-  const std::vector<std::vector<number> > &Wplus,
-  const std::vector<std::vector<number> > &Wminus,
-  double alpha)
-{
-  const unsigned int n_q_points = points.size();
+template <int dim>
+const double EulerEquations<dim>::gas_gamma = 1.4;
 
-                                  // We evaluate the flux at each of the quadrature points.
-  for (unsigned int q = 0; q < n_q_points; q++) {
-    std::vector<std::vector<Sacado::Fad::DFad<double> > > iflux(n_components<dim>(),
-                                               std::vector<Sacado::Fad::DFad<double> >(dim, 0));
-    std::vector<std::vector<Sacado::Fad::DFad<double> > > oflux(n_components<dim>(),
-                                               std::vector<Sacado::Fad::DFad<double> >(dim, 0));
 
-    Flux(iflux, points[q], Wplus[q]);
-    Flux(oflux, points[q], Wminus[q]);
 
-    for (unsigned int di = 0; di < n_components<dim>(); di++) {
-      nflux[q][di] = 0;
-      for (unsigned int d = 0; d < dim; d++) {
-        nflux[q][di] += 0.5*(iflux[di][d] + oflux[di][d])*normals[q](d);
-      }
-      nflux[q][di] += 0.5*alpha*(Wplus[q][di] - Wminus[q][di]);
-    }
-  }
 
-}
 
                                 // @sect3{Initial and side condition parsing}
                                 // For the initial condition we use the expression parser function
@@ -670,13 +665,12 @@ void ConsLaw<dim>::assemble_cell_term(
                                    // this could be done in a better way, since this
                                    // could be a rather large object, but for now it 
                                    // seems to work just fine.
-  std::vector<std::vector<std::vector<Sacado::Fad::DFad<double> > > > flux(n_q_points, 
-                                                          std::vector<std::vector<Sacado::Fad::DFad<double> > >(n_components<dim>(),
-                                                                                                std::vector<Sacado::Fad::DFad<double> >(dim, 0)));
+  typedef Sacado::Fad::DFad<double> FluxMatrix[EulerEquations<dim>::n_components][dim];
+  std::vector<FluxMatrix> flux(n_q_points);
 
-  for (unsigned int q=0; q < n_q_points; ++q) {
-    Flux(flux[q], fe_v.get_quadrature_points()[q], Wcn[q]);
-  }
+  for (unsigned int q=0; q < n_q_points; ++q)
+    flux_matrix(flux[q], Wcn[q]);
+  
 
                                   // We now have all of the function values/grads/fluxes,
                                   // so perform the assembly.  We have an outer loop

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.