for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
{
cell_matrix(i, j) +=
- // The first term is (lambda d_i u_i, d_j v_j) + (mu d_i
- // u_j, d_j v_i). Note that
- // <code>shape_grad(i,q_point)</code> returns the
+ // The first term is $\lambda \partial_i u_i, \partial_j
+ // v_j) + (\mu \partial_i u_j, \partial_j v_i)$. Note
+ // that <code>shape_grad(i,q_point)</code> returns the
// gradient of the only nonzero component of the i-th
// shape function at quadrature point q_point. The
// component <code>comp(i)</code> of the gradient, which
fe_values.shape_grad(j, q_point)[component_i] * //
mu_values[q_point]) //
+ //
- // The second term is (mu nabla u_i, nabla v_j). We
- // need not access a specific component of the
- // gradient, since we only have to compute the scalar
- // product of the two gradients, of which an
- // overloaded version of the operator* takes care, as
- // in previous examples.
+ // The second term is $(\mu \nabla u_i, \nabla
+ // v_j)$. We need not access a specific component of
+ // the gradient, since we only have to compute the
+ // scalar product of the two gradients, of which an
+ // overloaded version of <tt>operator*</tt> takes
+ // care, as in previous examples.
//
- // Note that by using the ?: operator, we only do this
- // if comp(i) equals comp(j), otherwise a zero is
- // added (which will be optimized away by the
- // compiler).
+ // Note that by using the <tt>?:</tt> operator, we only
+ // do this if <tt>component_i</tt> equals
+ // <tt>component_j</tt>, otherwise a zero is added
+ // (which will be optimized away by the compiler).
((component_i == component_j) ? //
(fe_values.shape_grad(i, q_point) * //
fe_values.shape_grad(j, q_point) * //