]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Comments updated.
authorkronbichler <kronbichler@0785d39b-7218-0410-832d-ea1e28bc413d>
Thu, 3 Sep 2009 12:51:09 +0000 (12:51 +0000)
committerkronbichler <kronbichler@0785d39b-7218-0410-832d-ea1e28bc413d>
Thu, 3 Sep 2009 12:51:09 +0000 (12:51 +0000)
git-svn-id: https://svn.dealii.org/trunk@19374 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-37/step-37.cc

index ccebf73d5d226b9c3c880002d7b18af270cca297..632a4b1ef941b875f039a032c12e7899b021c59d 100644 (file)
@@ -784,16 +784,18 @@ std::size_t MatrixFree<number,Transformation>::memory_consumption () const
                                 // @sect3{Laplace operator.}
 
                                 // This class implements the local action
-                                // of a Laplace preconditioner on a
-                                // quadrature point. It is very basic, can
-                                // be initialized with a Tensor of rank 2
-                                // and implements the
-                                // <code>transform</code> operation need by
-                                // the <code>MatrixFree</code> class. There
-                                // is one point worth noting: The operation
-                                // of the Laplace operator is a tensor of
-                                // rank two. It is even symmetric since it
-                                // is the product of the inverse Jacobian
+                                // of a Laplace operator on a quadrature
+                                // point. This is a very basic class
+                                // implementation, providing functions for
+                                // initialization with a Tensor of rank 2
+                                // and implementing the
+                                // <code>transform</code> operation needed
+                                // by the <code>MatrixFree</code>
+                                // class. There is one point worth noting:
+                                // The quadrature-point related action of
+                                // the Laplace operator is a tensor of rank
+                                // two. It is even symmetric since it is
+                                // the product of the inverse Jacobian
                                 // transformation between unit and real
                                 // cell with its transpose (times
                                 // quadrature weights and a coefficient,
@@ -804,28 +806,29 @@ std::size_t MatrixFree<number,Transformation>::memory_consumption () const
                                 // <code>double</code> numbers. Since we
                                 // also want to use <code>float</code>
                                 // numbers for the multigrid preconditioner
-                                // (that saves memory and computing time),
-                                // we manually keep a respective
-                                // field. Note that <code>dim</code> is a
-                                // template argument and hence known at
+                                // (in order to save memory and computing
+                                // time), we manually implement this
+                                // operator. Note that <code>dim</code> is
+                                // template argument and hence known at
                                 // compile-time, so the compiler knows that
-                                // the field has 3 entries if used in 2D
-                                // and 6 entries if used in 3D.
+                                // this symmetric rank-2 tensor has 3
+                                // entries if used in 2D and 6 entries if
+                                // used in 3D.
 template <int dim,typename number>
 class LaplaceOperator
 {
-public:
-  LaplaceOperator ();
+  public:
+    LaplaceOperator ();
 
-  LaplaceOperator (const Tensor<2,dim> &tensor);
+    LaplaceOperator (const Tensor<2,dim> &tensor);
 
-  void transform (number * result) const;
+    void transform (number * result) const;
 
-  LaplaceOperator<dim,number>&
-  operator = (const Tensor<2,dim> &tensor);
+    LaplaceOperator<dim,number>&
+    operator = (const Tensor<2,dim> &tensor);
 
-private:
-  number transformation[dim*(dim+1)/2];
+  private:
+    number transformation[dim*(dim+1)/2];
 };
 
 template<int dim,typename number>
@@ -846,21 +849,29 @@ LaplaceOperator<dim,number>::LaplaceOperator(const Tensor<2,dim> &tensor)
                                 // rank. Unfortunately, we need to
                                 // implement this by hand, since we don't
                                 // have tensors (note that the result
-                                // values are entries of a full matrix). It
-                                // feels a bit unsafe to operate with
-                                // points, but it works. We need to be
-                                // careful since we only saved half of the
-                                // rank-two tensor. It might seem
-                                // inefficient that we have an
-                                // <code>if</code> clause at this place
+                                // values are entries in a full matrix that
+                                // consists of doubles or floats). It might
+                                // feel a bit unsafe to operate on a
+                                // pointer to the data, but that is the
+                                // only possibility if we do not want to
+                                // copy data back and forth, which is
+                                // expensive since this is the innermost
+                                // position of the loop in the
+                                // <code>vmult</code> operation of the
+                                // MatrixFree class. We need to remember
+                                // that we only saved half the (symmetric)
+                                // rank-two tensor.
+                                //
+                                // It might seem inefficient that we have
+                                // an <code>if</code> clause at this place
                                 // (which is the innermost loop, so it
                                 // could be expensive), but note once again
                                 // that <code>dim</code> is known when this
-                                // code is compiled, so the compiler can
-                                // optize away the <code>if</code>
-                                // statement (and actually even inline
-                                // these few lines of code in the
-                                // <code>MatrixFree</code> class).
+                                // piece of code is compiled, so the
+                                // compiler can optize away the
+                                // <code>if</code> statement (and actually
+                                // even inline these few lines of code into
+                                // the <code>MatrixFree</code> class).
 template <int dim, typename number>
 void LaplaceOperator<dim,number>::transform (number* result) const
 {
@@ -889,9 +900,9 @@ void LaplaceOperator<dim,number>::transform (number* result) const
                                 // rank-2 tensor and writes it to the field
                                 // <code>transformation</code> of this
                                 // class. We save the upper part of the
-                                // tensor row-wise, so we first take the
-                                // (0,0)-entry, then the (0,1)-entry, and
-                                // so on. We only implement this for
+                                // symmetric tensor row-wise: we first take
+                                // the (0,0)-entry, then the (0,1)-entry,
+                                // and so on. We only implement this for
                                 // dimensions two and three.
 template <int dim, typename number>
 LaplaceOperator<dim,number>&
@@ -971,6 +982,8 @@ LaplaceProblem<dim>::LaplaceProblem (const unsigned int degree) :
 
 
 
+                                // @sect4{LaplaceProblem::setup_system}
+
                                 // This is the function of step-16 with
                                 // relevant changes due to the MatrixFree
                                 // class. What we need to do is to somehow
@@ -1077,6 +1090,8 @@ void LaplaceProblem<dim>::setup_system ()
 
 
 
+                                // @sect4{LaplaceProblem::assemble_system}
+
                                 // The assemble function is significantly
                                 // reduced compared to step-16. All we need
                                 // to do is to assemble the right hand side
@@ -1151,6 +1166,8 @@ void LaplaceProblem<dim>::assemble_system ()
 }
 
 
+                                // @sect4{LaplaceProblem::assemble_multigrid}
+
                                 // Here is another assemble
                                 // function. The integration core is
                                 // the same as above. Only the loop
@@ -1236,6 +1253,8 @@ void LaplaceProblem<dim>::assemble_multigrid ()
 
 
 
+                                // @sect4{LaplaceProblem::solve}
+
                                 // The solution process again looks like
                                 // step-16. We now use a Chebyshev smoother
                                 // instead of SSOR (which is very difficult
@@ -1318,6 +1337,8 @@ void LaplaceProblem<dim>::solve ()
 
 
 
+                                // @sect4{LaplaceProblem::output_results}
+
                                 // Here is the data output, which is
                                 // a simplified version of step-5. We
                                 // do a standard vtk output for
@@ -1343,11 +1364,13 @@ void LaplaceProblem<dim>::output_results (const unsigned int cycle) const
 
 
 
-                                          // The function that runs the
-                                          // program is very similar to the
-                                          // one in step-16. We make the
-                                          // calls a bit different for 2D
-                                          // and 3D, but that's it.
+                                // @sect4{LaplaceProblem::output_results}
+
+                                // The function that runs the
+                                // program is very similar to the
+                                // one in step-16. We make the
+                                // calls a bit different for 2D
+                                // and 3D, but that's it.
 template <int dim>
 void LaplaceProblem<dim>::run ()
 {
@@ -1374,6 +1397,7 @@ void LaplaceProblem<dim>::run ()
 
 
 
+                                // @sect3{The <code>main</code> function}
 int main ()
 {
   deallog.depth_console (0);

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.