]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
We now integrate twice over faces in 3d. Adjust tolerances.
authordeal <deal@0785d39b-7218-0410-832d-ea1e28bc413d>
Wed, 1 Oct 2003 20:24:31 +0000 (20:24 +0000)
committerdeal <deal@0785d39b-7218-0410-832d-ea1e28bc413d>
Wed, 1 Oct 2003 20:24:31 +0000 (20:24 +0000)
git-svn-id: https://svn.dealii.org/trunk@8082 0785d39b-7218-0410-832d-ea1e28bc413d

tests/base/quadrature_test.cc
tests/results/sparc-sun-solaris2.7+gcc2.95/base/quadrature_test.output

index 5b59b12e6d020cc448ffcec5c9efa4c6710c8ac1..07d64ce798b2386b366d349cedb0b2f3e416c79c 100644 (file)
@@ -1,6 +1,6 @@
 //----------------------------  quadrature_test.cc  ---------------------------
-//    $Id$
-//    Version: $Name$
+//    quadrature_test.cc,v 1.18 2003/01/08 17:58:18 wolf Exp
+//    Version: 
 //
 //    Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 by the deal.II authors
 //
@@ -168,13 +168,13 @@ check_faces (const std::vector<Quadrature<dim-1>*>& quadratures, const bool sub)
              exact_int = 2 * (sub ? 2:1) / (double) (i+1);
              break;
            case 3:
-             exact_int = 3 * (sub ? 4:1) / (double) (i+1)/(i+1);
+             exact_int = 3 * (sub ? 8:2) / (double) (i+1)/(i+1);
              break;
            }
       
          err = std::fabs(quadrature_int-exact_int);
        }
-      while (err<5e-15);
+      while (err<2e-14);
                                       // Uncomment here for testing
       //      deallog << " (Int " << quadrature_int << '-' << exact_int << '=' << err << ")";
       deallog << " is exact for polynomials of degree " << i-1 << std::endl;
index ef81214541e4e6e6ed8ed4c0a00e0039eae20d4e..d870dac15215546c0d07b3ed0d344e7b017011b9 100644 (file)
@@ -131,4 +131,4 @@ DEAL:3d:subfaces::Quadrature no.14 (t6QGauss1i2) is exact for polynomials of deg
 DEAL:3d:subfaces::Quadrature no.15 (t6QGauss1i2) is exact for polynomials of degree 9
 DEAL:3d:subfaces::Quadrature no.16 (t6QGauss1i2) is exact for polynomials of degree 11
 DEAL:3d:subfaces::Quadrature no.17 (t6QGauss1i2) is exact for polynomials of degree 13
-DEAL:3d:subfaces::Quadrature no.18 (t6QGauss1i2) is exact for polynomials of degree 15
+DEAL:3d:subfaces::Quadrature no.18 (t6QGauss1i2) is exact for polynomials of degree 16

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.