]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
First batch of changes to make the FullMatrix deal with complex numbers
authorbangerth <bangerth@0785d39b-7218-0410-832d-ea1e28bc413d>
Sun, 18 Nov 2007 22:20:58 +0000 (22:20 +0000)
committerbangerth <bangerth@0785d39b-7218-0410-832d-ea1e28bc413d>
Sun, 18 Nov 2007 22:20:58 +0000 (22:20 +0000)
git-svn-id: https://svn.dealii.org/trunk@15517 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/lac/include/lac/full_matrix.h
deal.II/lac/include/lac/full_matrix.templates.h
deal.II/lac/source/full_matrix.double.cc

index e147ac1cb963e396bc0f344a99d0cdefeeb9095f..ca5e181a63c9e12af04f9bba9918255598cb3fcf 100644 (file)
@@ -15,6 +15,7 @@
 
 
 #include <base/config.h>
+#include <base/numbers.h>
 #include <base/table.h>
 #include <lac/exceptions.h>
 #include <lac/identity_matrix.h>
@@ -62,6 +63,29 @@ class FullMatrix : public Table<2,number>
                                      * the STL container classes.
                                      */
     typedef number value_type;
+
+
+                                    /**
+                                     * Declare a type that has holds
+                                     * real-valued numbers with the
+                                     * same precision as the template
+                                     * argument to this class. If the
+                                     * template argument of this
+                                     * class is a real data type,
+                                     * then real_type equals the
+                                     * template argument. If the
+                                     * template argument is a
+                                     * std::complex type then
+                                     * real_type equals the type
+                                     * underlying the complex
+                                     * numbers.
+                                     *
+                                     * This typedef is used to
+                                     * represent the return type of
+                                     * norms.
+                                     */
+    typedef typename numbers::NumberTraits<number>::real_type real_type;
+
     
     class const_iterator;
     
@@ -430,8 +454,17 @@ class FullMatrix : public Table<2,number>
                                      * of the finite element
                                      * function.
                                      *
-                                     * Obviously, the matrix needs to
-                                     * be quadratic for this operation.
+                                     * Obviously, the matrix needs to be
+                                     * quadratic for this operation, and for
+                                     * the result to actually be a norm it
+                                     * also needs to be either real symmetric
+                                     * or complex hermitian.
+                                     *
+                                     * The underlying template types of both
+                                     * this matrix and the given vector
+                                     * should either both be real or
+                                     * complex-valued, but not mixed, for
+                                     * this function to make sense.
                                      */
     template<typename number2>
     number2 matrix_norm_square (const Vector<number2> &v) const;
@@ -444,6 +477,12 @@ class FullMatrix : public Table<2,number>
                                      * the cellwise scalar product of
                                      * two functions in the finite
                                      * element context.
+                                     *
+                                     * The underlying template types of both
+                                     * this matrix and the given vector
+                                     * should either both be real or
+                                     * complex-valued, but not mixed, for
+                                     * this function to make sense.
                                      */
     template<typename number2>
     number2 matrix_scalar_product (const Vector<number2> &u,
@@ -457,7 +496,7 @@ class FullMatrix : public Table<2,number>
                                      * |M_{ij}|$ (maximum of
                                      * the sums over columns).
                                      */
-    number l1_norm () const;
+    real_type l1_norm () const;
 
                                     /**
                                      * Return the $l_\infty$-norm of
@@ -466,7 +505,7 @@ class FullMatrix : public Table<2,number>
                                      * |M_{ij}|$ (maximum of the sums
                                      * over rows).
                                      */
-    number linfty_norm () const;
+    real_type linfty_norm () const;
     
                                     /**
                                      * Compute the Frobenius norm of
@@ -480,7 +519,7 @@ class FullMatrix : public Table<2,number>
                                      * <i>l<sub>2</sub></i>-norm of
                                      * the vector space.
                                      */
-    number frobenius_norm () const;
+    real_type frobenius_norm () const;
     
                                     /**
                                      * Compute the relative norm of
@@ -495,7 +534,7 @@ class FullMatrix : public Table<2,number>
                                      * symmetric within a certain
                                      * accuracy, or not.
                                      */
-    number relative_symmetry_norm2 () const;
+    real_type relative_symmetry_norm2 () const;
     
                                     /**
                                       * Computes the determinant of a
@@ -531,7 +570,7 @@ class FullMatrix : public Table<2,number>
                                     /**
                                      * Print the matrix and allow
                                      * formatting of entries.
-                                    *
+                                     *
                                      * The parameters allow for a
                                      * flexible setting of the output
                                      * format:
@@ -1141,7 +1180,7 @@ template <typename number>
 FullMatrix<number> &
 FullMatrix<number>::operator = (const number d)
 {
-  Assert (d==0, ExcScalarAssignmentOnlyForZeroValue());
+  Assert (d==number(0), ExcScalarAssignmentOnlyForZeroValue());
 
   if (this->n_elements() != 0)
     std::fill_n (this->val, this->n_elements(), number());
index 42df4a50bb89f3855de8d2a56db978b222edf83f..0d3407c153e54c94c0b237000d7bbab44c67a309 100644 (file)
@@ -314,9 +314,9 @@ FullMatrix<number>::vmult (Vector<number2>& dst,
       {
        for (unsigned int i=0; i<size_m; ++i)
          {
-           number2 s = 0.;
+           number s = 0.;
            for (unsigned int j=0; j<size_n; ++j)
-             s += src(j) * *(e++);
+             s += number(src(j)) * *(e++);
            dst(i) = s;
          };
       }
@@ -324,13 +324,13 @@ FullMatrix<number>::vmult (Vector<number2>& dst,
       {
        for (unsigned int i=0; i<size_m; ++i)
          {
-           number2 s = 0.;
+           number s = 0.;
            for (unsigned int j=0; j<size_n; ++j)
-             s += src(j) * *(e++);
+             s += number(src(j)) * *(e++);
            dst(i) += s;
-         };
-      };
-  };
+         }
+      }
+  }
 }
 
 
@@ -355,9 +355,9 @@ void FullMatrix<number>::Tvmult (Vector<number2>       &dst,
     {
       for (unsigned int i=0; i<size_n; ++i)
        {
-         number2 s = 0.;
+         number s = 0.;
          for (unsigned int j=0; j<size_m; ++j)
-           s += src(j) * this->el(j,i);
+           s += number(src(j)) * this->el(j,i);
          dst(i) = s;
        };
     }
@@ -365,12 +365,12 @@ void FullMatrix<number>::Tvmult (Vector<number2>       &dst,
     {
       for (unsigned int i=0; i<size_n; ++i)
        {
-         number2 s = 0.;
+         number s = 0.;
          for (unsigned int j=0; j<size_m; ++j)
-           s += src(j) * this->el(j,i);
+           s += number(src(j)) * this->el(j,i);
          dst(i) += s;
-       };
-    };
+       }
+    }
 }
 
 
@@ -388,14 +388,14 @@ number FullMatrix<number>::residual (Vector<number2>& dst,
 
   Assert (&src != &dst, ExcSourceEqualsDestination());
 
-  number2 s, res = 0.;
+  number res = 0.;
   const unsigned int size_m = m(),
                     size_n = n();
   for (unsigned int i=0; i<size_n; ++i)
     {
-      s = right(i);
+      number s = right(i);
       for (unsigned int j=0; j<size_m; ++j)
-       s -= src(j) * this->el(i,j);
+       s -= number(src(j)) * this->el(i,j);
       dst(i) = s;
       res += s*s;
     }
@@ -416,11 +416,11 @@ void FullMatrix<number>::forward (Vector<number2>       &dst,
 
   unsigned int i,j;
   unsigned int nu = ( (m()<n()) ? m() : n());
-  number2 s;
   for (i=0; i<nu; ++i)
     {
-      s = src(i);
-      for (j=0; j<i; ++j) s -= dst(j) * this->el(i,j);
+      number s = src(i);
+      for (j=0; j<i; ++j)
+       s -= number(dst(j)) * this->el(i,j);
       dst(i) = s/this->el(i,i);
     }
 }
@@ -436,12 +436,12 @@ void FullMatrix<number>::backward (Vector<number2>       &dst,
   
   unsigned int j;
   unsigned int nu = (m()<n() ? m() : n());
-  number2 s;
   for (int i=nu-1; i>=0; --i)
     {
-      s = src(i);
-      for (j=i+1; j<nu; ++j) s -= dst(j) * this->el(i,j);
-      dst(i) = s/this->el(i,i);
+      number2 s = src(i);
+      for (j=i+1; j<nu; ++j)
+       s -= dst(j) * number2(this->el(i,j));
+      dst(i) = s/number2(this->el(i,i));
     }
 }
 
@@ -946,7 +946,8 @@ void FullMatrix<number>::Tmmult (FullMatrix<number2>       &dst,
 
 template <typename number>
 template <typename number2>
-number2 FullMatrix<number>::matrix_norm_square (const Vector<number2> &v) const
+number2
+FullMatrix<number>::matrix_norm_square (const Vector<number2> &v) const
 {
   Assert (!this->empty(), ExcEmptyMatrix());
   
@@ -960,14 +961,14 @@ number2 FullMatrix<number>::matrix_norm_square (const Vector<number2> &v) const
   
   for (unsigned int row=0; row<n_rows; ++row)
     {
-      number2 s = 0.;
+      number s = 0.;
       const number * const val_end_of_row = val_ptr+n_rows;
       v_ptr = v.begin();
       while (val_ptr != val_end_of_row)
-       s += *val_ptr++ * *v_ptr++;
+       s += number(*val_ptr++) * number(*v_ptr++);
 
-      sum += s* v(row);
-    };
+      sum += s* number(v(row));
+    }
 
   return sum;
 }
@@ -975,7 +976,8 @@ number2 FullMatrix<number>::matrix_norm_square (const Vector<number2> &v) const
 
 template <typename number>
 template <typename number2>
-number2 FullMatrix<number>::matrix_scalar_product (const Vector<number2> &u,
+number2
+FullMatrix<number>::matrix_scalar_product (const Vector<number2> &u,
                                                   const Vector<number2> &v) const
 {
   Assert (!this->empty(), ExcEmptyMatrix());
@@ -991,14 +993,14 @@ number2 FullMatrix<number>::matrix_scalar_product (const Vector<number2> &u,
   
   for (unsigned int row=0; row<n_rows; ++row)
     {
-      number2 s = 0.;
+      number s = 0.;
       const number * const val_end_of_row = val_ptr+n_cols;
       v_ptr = v.begin();
       while (val_ptr != val_end_of_row)
-       s += *val_ptr++ * *v_ptr++;
+       s += number(*val_ptr++) * number(*v_ptr++);
 
-      sum += s* u(row);
-    };
+      sum += s * number(u(row));
+    }
 
   return sum;
 }
@@ -1015,25 +1017,26 @@ FullMatrix<number>::symmetrize ()
   for (unsigned int i=0; i<N; ++i)
     for (unsigned int j=i+1; j<N; ++j)
       {
-       const number t = (this->el(i,j) + this->el(j,i)) / 2;
+       const number t = (this->el(i,j) + this->el(j,i)) / 2.;
        this->el(i,j) = this->el(j,i) = t;
       };
 }
 
 
 template <typename number>
-number FullMatrix<number>::l1_norm () const
+typename FullMatrix<number>::real_type
+FullMatrix<number>::l1_norm () const
 {
   Assert (!this->empty(), ExcEmptyMatrix());
   
-  number sum=0, max=0;
+  real_type sum=0, max=0;
   const unsigned int n_rows = m(), n_cols = n();
   
   for (unsigned int col=0; col<n_cols; ++col)
     {
       sum=0;
       for (unsigned int row=0; row<n_rows; ++row)
-       sum += std::fabs(this->el(row,col));
+       sum += std::abs(this->el(row,col));
       if (sum > max)
        max = sum;
     }
@@ -1043,18 +1046,19 @@ number FullMatrix<number>::l1_norm () const
 
 
 template <typename number>
-number FullMatrix<number>::linfty_norm () const
+typename FullMatrix<number>::real_type
+FullMatrix<number>::linfty_norm () const
 {
   Assert (!this->empty(), ExcEmptyMatrix());
   
-  number sum=0, max=0;
+  real_type sum=0, max=0;
   const unsigned int n_rows = m(), n_cols = n();
 
   for (unsigned int row=0; row<n_rows; ++row)
     {
       sum=0;
       for (unsigned int col=0; col<n_cols; ++col)
-       sum += std::fabs(this->el(row,col));
+       sum += std::abs(this->el(row,col));
       if (sum > max)
        max = sum;
     }
@@ -1950,33 +1954,37 @@ FullMatrix<number>::trace () const
 
 
 template <typename number>
-number
+typename FullMatrix<number>::real_type
 FullMatrix<number>::frobenius_norm () const
 {
   Assert (!this->empty(), ExcEmptyMatrix());
   
-  number s = 0.;
+  real_type s = 0.;
   for (unsigned int i=0; i<this->n_rows()*this->n_cols(); ++i)
-    s += this->data()[i]*this->data()[i];
+    s += numbers::NumberTraits<number>::abs_square(this->data()[i]);
   return std::sqrt(s);
 }
 
 
 
 template <typename number>
-number
+typename FullMatrix<number>::real_type
 FullMatrix<number>::relative_symmetry_norm2 () const
 {
   Assert (!this->empty(), ExcEmptyMatrix());
   
-  number s = 0.;
-  number a = 0.;
+  real_type s = 0.;
+  real_type a = 0.;
   for (unsigned int i=0; i<this->n_rows(); ++i)
     for (unsigned int j=0; j<this->n_cols(); ++j)
       {
-       a += ((*this)(i,j)-(*this)(j,i))*((*this)(i,j)-(*this)(j,i));
-       s += (*this)(i,j)*(*this)(i,j);
+       const number x_ij = (*this)(i,j);
+       const number x_ji = (*this)(j,i);
+       
+       a += numbers::NumberTraits<number>::abs_square(x_ij-x_ji);
+       s += numbers::NumberTraits<number>::abs_square(x_ij);
       }
+  
   if (s!=0.)
     return std::sqrt(a)/std::sqrt(s);
   return 0;
@@ -2084,7 +2092,7 @@ FullMatrix<number>::invert (const FullMatrix<number2> &M)
        const number t63 = t43*t20-t43*t22-t46*t33+t46*t35+
                           t49*t50-t49*t52-t54*t25+t54*t27+
                           t57*t38-t57*t40-t60*t50+t60*t52;
-       const number t65 = 1/(t42+t63);
+       const number t65 = 1./(t42+t63);
        const number t71 = M.el(0,2)*M.el(2,1);
        const number t73 = M.el(0,3)*M.el(2,1);
        const number t75 = M.el(0,2)*M.el(3,1);
@@ -2173,7 +2181,7 @@ FullMatrix<number>::precondition_Jacobi (Vector<somenumber>       &dst,
   const somenumber        *src_ptr = src.begin();
   
   for (unsigned int i=0; i<n; ++i, ++dst_ptr, ++src_ptr)
-    *dst_ptr = om * *src_ptr / this->el(i,i);
+    *dst_ptr = somenumber(om) * *src_ptr / somenumber(this->el(i,i));
 }
 
 
@@ -2213,7 +2221,7 @@ FullMatrix<number>::print_formatted (
   for (unsigned int i=0; i<m(); ++i) 
     {
       for (unsigned int j=0; j<n(); ++j)
-       if (std::fabs(this->el(i,j)) > threshold)
+       if (std::abs(this->el(i,j)) > threshold)
          out << std::setw(width)
              << this->el(i,j) * denominator << ' ';
        else
@@ -2249,7 +2257,7 @@ FullMatrix<number>::gauss_jordan ()
                                   // regular
   double diagonal_sum = 0;
   for (unsigned int i=0; i<N; ++i)
-    diagonal_sum += std::fabs(this->el(i,i));
+    diagonal_sum += std::abs(this->el(i,i));
   const double typical_diagonal_element = diagonal_sum/N;
 
                                   // initialize the array that holds
@@ -2265,13 +2273,13 @@ FullMatrix<number>::gauss_jordan ()
                                       // part of the line on and
                                       // right of the diagonal for
                                       // the largest element
-      number       max = std::fabs(this->el(j,j));
+      real_type max = std::abs(this->el(j,j));
       unsigned int r   = j;
       for (unsigned int i=j+1; i<N; ++i)
        {
-         if (std::fabs(this->el(i,j)) > max)
+         if (std::abs(this->el(i,j)) > max)
            {
-             max = std::fabs(this->el(i,j));
+             max = std::abs(this->el(i,j));
              r = i;
            }
        }
index 29c5e79095a38b2bdfac265f0ee62f58802fc284..0361ce0a50d6117e112cf1673c5e6670f2c0b7d8 100644 (file)
@@ -117,4 +117,111 @@ FullMatrix<TYPEMAT>::residual<TYPEVEC,TYPERES>(Vector<TYPEVEC>&,
                                               const Vector<TYPERES>&) const;
 
 
+
+// #undef TYPEMAT
+
+// #define TYPEMAT std::complex<double>
+
+// template class FullMatrix<TYPEMAT>;
+
+// template void FullMatrix<TYPEMAT>::print(
+//   LogStream&, const unsigned int, const unsigned int) const;
+// template void FullMatrix<TYPEMAT>::print(
+//   std::ostream&, const unsigned int, const unsigned int) const;
+
+// template FullMatrix<TYPEMAT>& FullMatrix<TYPEMAT>::operator =(
+//   const FullMatrix<std::complex<float> >&);
+
+// #undef TYPEMAT2
+// #define TYPEMAT2 std::complex<double>
+
+// template void FullMatrix<TYPEMAT>::fill<TYPEMAT2> (
+//   const FullMatrix<TYPEMAT2>&, unsigned, unsigned, unsigned, unsigned);
+// template void FullMatrix<TYPEMAT>::add<TYPEMAT2> (const TYPEMAT, const FullMatrix<TYPEMAT2>&);
+// template void FullMatrix<TYPEMAT>::add<TYPEMAT2> (const TYPEMAT, const FullMatrix<TYPEMAT2>&,
+//                                               const TYPEMAT, const FullMatrix<TYPEMAT2>&);
+// template void FullMatrix<TYPEMAT>::add<TYPEMAT2> (const TYPEMAT, const FullMatrix<TYPEMAT2>&,
+//                                               const TYPEMAT, const FullMatrix<TYPEMAT2>&,
+//                                               const TYPEMAT, const FullMatrix<TYPEMAT2>&);
+// template void FullMatrix<TYPEMAT>::add<TYPEMAT2> (
+//   const FullMatrix<TYPEMAT2>&, std::complex<double>, unsigned, unsigned, unsigned, unsigned);
+// template void FullMatrix<TYPEMAT>::Tadd<TYPEMAT2> (const TYPEMAT, const FullMatrix<TYPEMAT2>&);
+// template void FullMatrix<TYPEMAT>::Tadd<TYPEMAT2> (
+//   const FullMatrix<TYPEMAT2>&, std::complex<double>, unsigned, unsigned, unsigned, unsigned);
+// template void FullMatrix<TYPEMAT>::equ<TYPEMAT2> (const TYPEMAT, const FullMatrix<TYPEMAT2>&);
+// template void FullMatrix<TYPEMAT>::equ<TYPEMAT2> (const TYPEMAT, const FullMatrix<TYPEMAT2>&,
+//                                               const TYPEMAT, const FullMatrix<TYPEMAT2>&);
+// template void FullMatrix<TYPEMAT>::equ<TYPEMAT2> (const TYPEMAT, const FullMatrix<TYPEMAT2>&,
+//                                               const TYPEMAT, const FullMatrix<TYPEMAT2>&,
+//                                               const TYPEMAT, const FullMatrix<TYPEMAT2>&);
+// template void FullMatrix<TYPEMAT>::mmult<TYPEMAT2> (FullMatrix<TYPEMAT2>&, const FullMatrix<TYPEMAT2>&, const bool) const;
+// template void FullMatrix<TYPEMAT>::Tmmult<TYPEMAT2> (FullMatrix<TYPEMAT2>&, const FullMatrix<TYPEMAT2>&, const bool) const;
+// template void FullMatrix<TYPEMAT>::add_diag<TYPEMAT2> (const TYPEMAT, const FullMatrix<TYPEMAT2>&);
+// template void FullMatrix<TYPEMAT>::invert<TYPEMAT2> (const FullMatrix<TYPEMAT2>&);
+
+
+// #undef TYPEVEC
+// #undef TYPERES
+// #define TYPEVEC std::complex<double>
+// #define TYPERES std::complex<double>
+
+// template void FullMatrix<TYPEMAT>::fill_permutation<TYPEVEC> (
+//   const FullMatrix<TYPEVEC>&,
+//   const std::vector<unsigned int>&,
+//   const std::vector<unsigned int>&);
+// template void FullMatrix<TYPEMAT>::vmult<TYPEVEC>(
+//   Vector<TYPEVEC>&, const Vector<TYPEVEC>&, bool) const;
+// template void FullMatrix<TYPEMAT>::Tvmult<TYPEVEC>(
+//   Vector<TYPEVEC>&, const Vector<TYPEVEC>&, bool) const;
+// template std::complex<double> FullMatrix<TYPEMAT>::residual<TYPEVEC>(
+//   Vector<TYPEVEC>&, const Vector<TYPEVEC>&, const Vector<TYPERES>&) const;
+// template TYPEVEC FullMatrix<TYPEMAT>::matrix_norm_square<TYPEVEC> (
+//   const Vector<TYPEVEC> &) const;
+// template TYPEVEC FullMatrix<TYPEMAT>::matrix_scalar_product<TYPEVEC>(
+//   const Vector<TYPEVEC>&, const Vector<TYPEVEC>&) const;
+// template void FullMatrix<TYPEMAT>::forward<TYPEVEC>(
+//   Vector<TYPEVEC>&, const Vector<TYPEVEC>&) const;
+// template void FullMatrix<TYPEMAT>::backward<TYPEVEC>(
+//   Vector<TYPEVEC>&, const Vector<TYPEVEC>&) const;
+
+// template
+// void FullMatrix<TYPEMAT>::precondition_Jacobi<TYPEVEC> (
+//   Vector<TYPEVEC> &, const Vector<TYPEVEC> &, const TYPEMAT) const;
+
+// #undef TYPEVEC
+// #define TYPEVEC std::complex<float>
+
+// template void FullMatrix<TYPEMAT>::fill_permutation<TYPEVEC> (
+//   const FullMatrix<TYPEVEC>&,
+//   const std::vector<unsigned int>&,
+//   const std::vector<unsigned int>&);
+// template void FullMatrix<TYPEMAT>::vmult<TYPEVEC>(
+//   Vector<TYPEVEC>&, const Vector<TYPEVEC>&, bool) const;
+// template void FullMatrix<TYPEMAT>::Tvmult<TYPEVEC>(
+//   Vector<TYPEVEC>&, const Vector<TYPEVEC>&, bool) const;
+// template std::complex<double> FullMatrix<TYPEMAT>::residual<TYPEVEC>(
+//   Vector<TYPEVEC>&, const Vector<TYPEVEC>&, const Vector<TYPERES>&) const;
+// template TYPEVEC FullMatrix<TYPEMAT>::matrix_norm_square<TYPEVEC> (
+//   const Vector<TYPEVEC> &) const;
+// template TYPEVEC FullMatrix<TYPEMAT>::matrix_scalar_product<TYPEVEC>(
+//   const Vector<TYPEVEC>&, const Vector<TYPEVEC>&) const;
+// template void FullMatrix<TYPEMAT>::forward<TYPEVEC>(
+//   Vector<TYPEVEC>&, const Vector<TYPEVEC>&) const;
+// template void FullMatrix<TYPEMAT>::backward<TYPEVEC>(
+//   Vector<TYPEVEC>&, const Vector<TYPEVEC>&) const;
+// template
+// void FullMatrix<TYPEMAT>::precondition_Jacobi<TYPEVEC> (
+//   Vector<TYPEVEC> &, const Vector<TYPEVEC> &, const TYPEMAT) const;
+
+
+// #undef TYPERES
+// #define TYPERES std::complex<float>
+
+// template
+// std::complex<double>
+// FullMatrix<TYPEMAT>::residual<TYPEVEC,TYPERES>(Vector<TYPEVEC>&,
+//                                            const Vector<TYPEVEC>&,
+//                                            const Vector<TYPERES>&) const;
+
+
 DEAL_II_NAMESPACE_CLOSE

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.