const Tensor<2, dim> &H_i = discrete_hessians[i][q];
const Tensor<2, dim> &H_j = discrete_hessians[j][q];
- const Tensor<2, dim> &H_i_neigh = discrete_hessians_neigh[face_no][i][q];
- const Tensor<2, dim> &H_j_neigh = discrete_hessians_neigh[face_no][j][q];
+ const Tensor<2, dim> &H_i_neigh =
+ discrete_hessians_neigh[face_no][i][q];
+ const Tensor<2, dim> &H_j_neigh =
+ discrete_hessians_neigh[face_no][j][q];
stiffness_matrix_cn(i, j) +=
scalar_product(H_j_neigh, H_i) * dx;
// In the next step, we need to have a global way to compare the
// cells in order to not calculate the same jump term twice:
if (neighbor_cell->id() < cell->id())
- continue; // skip this face (already considered)
+ continue; // skip this face (already considered)
else
{
fe_face_neighbor.reinit(neighbor_cell, face_no_neighbor);
Vector<double> local_rhs_re(n_dofs_lift), local_rhs_be(n_dofs_lift),
coeffs_re(n_dofs_lift), coeffs_be(n_dofs_lift), coeffs_tmp(n_dofs_lift);
- SolverControl solver_control(1000, 1e-12);
+ SolverControl solver_control(1000, 1e-12);
SolverCG<Vector<double>> solver(solver_control);
double factor_avg; // 0.5 for interior faces, 1.0 for boundary faces
{
try
{
- const unsigned int n_ref =
- 3; // number of mesh refinements
-
+ const unsigned int n_ref = 3; // number of mesh refinements
+
const unsigned int degree =
2; // FE degree for u_h and the two lifting terms
const double penalty_val =
1.0; // penalty coefficient for the jump of the values
- Step82::BiLaplacianLDGLift<2> problem(n_ref, degree, penalty_grad, penalty_val);
+ Step82::BiLaplacianLDGLift<2> problem(n_ref,
+ degree,
+ penalty_grad,
+ penalty_val);
problem.run();
}