]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Do like in step-7: put everything into a namespace.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Fri, 19 Aug 2011 04:42:39 +0000 (04:42 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Fri, 19 Aug 2011 04:42:39 +0000 (04:42 +0000)
git-svn-id: https://svn.dealii.org/trunk@24115 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-10/step-10.cc

index 4ec0a8b16f0ce9d2a6bb7ae98162e6e33397f8c4..d3395c9d1d47b2c34b0302b807f99b5995394df9 100644 (file)
@@ -3,7 +3,7 @@
 
 /*    $Id$       */
 /*                                                                */
-/*    Copyright (C) 2001, 2002, 2003, 2004, 2006, 2007 by the deal.II authors */
+/*    Copyright (C) 2001, 2002, 2003, 2004, 2006, 2007, 2011 by the deal.II authors */
 /*                                                                */
 /*    This file is subject to QPL and may not be  distributed     */
 /*    without copyright and license information. Please refer     */
 
                                 // The last step is as in previous
                                 // programs:
-using namespace dealii;
-
-                                // Now, as we want to compute the
-                                // value of $\pi$, we have to compare to
-                                // somewhat. These are the first few
-                                // digits of $\pi$, which we define
-                                // beforehand for later use. Since we
-                                // would like to compute the
-                                // difference between two numbers
-                                // which are quite accurate, with the
-                                // accuracy of the computed
-                                // approximation to $\pi$ being in the
-                                // range of the number of digits
-                                // which a double variable can hold,
-                                // we rather declare the reference
-                                // value as a <code>long double</code> and
-                                // give it a number of extra digits:
-const long double pi = 3.141592653589793238462643;
-
-
-
-                                // Then, the first task will be to
-                                // generate some output. Since this
-                                // program is so small, we do not
-                                // employ object oriented techniques
-                                // in it and do not declare classes
-                                // (although, of course, we use the
-                                // object oriented features of the
-                                // library). Rather, we just pack the
-                                // functionality into separate
-                                // functions. We make these functions
-                                // templates on the number of space
-                                // dimensions to conform to usual
-                                // practice when using deal.II,
-                                // although we will only use them for
-                                // two space dimensions.
-                                //
-                                // The first of these functions just
-                                // generates a triangulation of a
-                                // circle (hyperball) and outputs the
-                                // Qp mapping of its cells for
-                                // different values of <code>p</code>. Then,
-                                // we refine the grid once and do so
-                                // again.
-template <int dim>
-void gnuplot_output()
+namespace Step10
 {
-  std::cout << "Output of grids into gnuplot files:" << std::endl
-           << "===================================" << std::endl;
-
-                                  // So first generate a coarse
-                                  // triangulation of the circle and
-                                  // associate a suitable boundary
-                                  // description to it. Note that the
-                                  // default values of the
-                                  // HyperBallBoundary constructor
-                                  // are a center at the origin and a
-                                  // radius equals one.
-  Triangulation<dim> triangulation;
-  GridGenerator::hyper_ball (triangulation);
-  static const HyperBallBoundary<dim> boundary;
-  triangulation.set_boundary (0, boundary);
-
-                                  // Next generate output for this
-                                  // grid and for a once refined
-                                  // grid. Note that we have hidden
-                                  // the mesh refinement in the loop
-                                  // header, which might be uncommon
-                                  // but nevertheless works. Also it
-                                  // is strangely consistent with
-                                  // incrementing the loop index
-                                  // denoting the refinement level.
-  for (unsigned int refinement=0; refinement<2;
-       ++refinement, triangulation.refine_global(1))
-    {
-      std::cout << "Refinement level: " << refinement << std::endl;
-
-                                      // Then have a string which
-                                      // denotes the base part of the
-                                      // names of the files into
-                                      // which we write the
-                                      // output. Note that in the
-                                      // parentheses in the
-                                      // initializer we do arithmetic
-                                      // on characters, which assumes
-                                      // that first the characters
-                                      // denoting numbers are placed
-                                      // consecutively (which is
-                                      // probably true for all
-                                      // reasonable character sets
-                                      // nowadays), but also assumes
-                                      // that the increment
-                                      // <code>refinement</code> is less than
-                                      // ten. This is therefore more
-                                      // a quick hack if we know
-                                      // exactly the values which the
-                                      // increment can assume. A
-                                      // better implementation would
-                                      // use the
-                                      // <code>std::istringstream</code>
-                                      // class to generate a name.
-      std::string filename_base = "ball";
-      filename_base += '0'+refinement;
-
-                                      // Then output the present grid
-                                      // for Q1, Q2, and Q3 mappings:
-      for (unsigned int degree=1; degree<4; ++degree)
-       {
-         std::cout << "Degree = " << degree << std::endl;
-
-                                          // For this, first set up
-                                          // an object describing the
-                                          // mapping. This is done
-                                          // using the <code>MappingQ</code>
-                                          // class, which takes as
-                                          // argument to the
-                                          // constructor the
-                                          // polynomial degree which
-                                          // it shall use.
-         const MappingQ<dim> mapping (degree);
-                                          // We note one interesting
-                                          // fact: if you want a
-                                          // piecewise linear
-                                          // mapping, then you could
-                                          // give a value of <code>1</code> to
-                                          // the
-                                          // constructor. However,
-                                          // for linear mappings, so
-                                          // many things can be
-                                          // generated simpler that
-                                          // there is another class,
-                                          // called <code>MappingQ1</code>
-                                          // which does exactly the
-                                          // same is if you gave an
-                                          // degree of <code>1</code> to the
-                                          // <code>MappingQ</code> class, but
-                                          // does so significantly
-                                          // faster. <code>MappingQ1</code> is
-                                          // also the class that is
-                                          // implicitly used
-                                          // throughout the library
-                                          // in many functions and
-                                          // classes if you do not
-                                          // specify another mapping
-                                          // explicitly.
-
-
-                                          // In degree to actually
-                                          // write out the present
-                                          // grid with this mapping,
-                                          // we set up an object
-                                          // which we will use for
-                                          // output. We will generate
-                                          // Gnuplot output, which
-                                          // consists of a set of
-                                          // lines describing the
-                                          // mapped triangulation. By
-                                          // default, only one line
-                                          // is drawn for each face
-                                          // of the triangulation,
-                                          // but since we want to
-                                          // explicitely see the
-                                          // effect of the mapping,
-                                          // we want to have the
-                                          // faces in more
-                                          // detail. This can be done
-                                          // by passing the output
-                                          // object a structure which
-                                          // contains some flags. In
-                                          // the present case, since
-                                          // Gnuplot can only draw
-                                          // straight lines, we
-                                          // output a number of
-                                          // additional points on the
-                                          // faces so that each face
-                                          // is drawn by 30 small
-                                          // lines instead of only
-                                          // one. This is sufficient
-                                          // to give us the
-                                          // impression of seeing a
-                                          // curved line, rather than
-                                          // a set of straight lines.
-         GridOut grid_out;
-         GridOutFlags::Gnuplot gnuplot_flags(false, 30);
-         grid_out.set_flags(gnuplot_flags);
-  
-                                          // Finally, generate a
-                                          // filename and a file for
-                                          // output using the same
-                                          // evil hack as above:
-         std::string filename = filename_base+"_mapping_q";
-         filename += ('0'+degree);
-         filename += ".dat";
-         std::ofstream gnuplot_file (filename.c_str());
-
-                                          // Then write out the
-                                          // triangulation to this
-                                          // file. The last argument
-                                          // of the function is a
-                                          // pointer to a mapping
-                                          // object. This argument
-                                          // has a default value, and
-                                          // if no value is given a
-                                          // simple <code>MappingQ1</code>
-                                          // object is taken, which
-                                          // we briefly described
-                                          // above. This would then
-                                          // result in a piecewise
-                                          // linear approximation of
-                                          // the true boundary in the
-                                          // output.
-         grid_out.write_gnuplot (triangulation, gnuplot_file, &mapping);
-       }
-      std::cout << std::endl;
-    }
-}
-
-                                // Now we proceed with the main part
-                                // of the code, the approximation of
-                                // $\pi$. The area of a circle is of
-                                // course given by $\pi r^2$, so
-                                // having a circle of radius 1, the
-                                // area represents just the number
-                                // that is searched for. The
-                                // numerical computation of the area
-                                // is performed by integrating the
-                                // constant function of value 1 over
-                                // the whole computational domain,
-                                // i.e. by computing the areas
-                                // $\int_K 1 dx=\int_{\hat K} 1
-                                // \ \textrm{det}\ J(\hat x) d\hat x
-                                // \approx \sum_i \textrm{det}
-                                // \ J(\hat x_i)w(\hat x_i)$, where the
-                                // sum extends over all quadrature
-                                // points on all active cells in the
-                                // triangulation, with $w(x_i)$ being
-                                // the weight of quadrature point
-                                // $x_i$. The integrals on each cell
-                                // are approximated by numerical
-                                // quadrature, hence the only
-                                // additional ingredient we need is
-                                // to set up a FEValues object that
-                                // provides the corresponding `JxW'
-                                // values of each cell. (Note that
-                                // `JxW' is meant to abbreviate
-                                // <code>Jacobian determinant times
-                                // weight</code>; since in numerical
-                                // quadrature the two factors always
-                                // occur at the same places, we only
-                                // offer the combined quantity,
-                                // rather than two separate ones.) We
-                                // note that here we won't use the
-                                // FEValues object in its original
-                                // purpose, i.e. for the computation
-                                // of values of basis functions of a
-                                // specific finite element at certain
-                                // quadrature points. Rather, we use
-                                // it only to gain the `JxW' at the
-                                // quadrature points, irrespective of
-                                // the (dummy) finite element we will
-                                // give to the constructor of the
-                                // FEValues object. The actual finite
-                                // element given to the FEValues
-                                // object is not used at all, so we
-                                // could give any.
-template <int dim>
-void compute_pi_by_area ()
-{
-  std::cout << "Computation of Pi by the area:" << std::endl
-           << "==============================" << std::endl;
-
-                                  // For the numerical quadrature on
-                                  // all cells we employ a quadrature
-                                  // rule of sufficiently high
-                                  // degree. We choose QGauss that
-                                  // is of order 8 (4 points), to be sure that
-                                  // the errors due to numerical
-                                  // quadrature are of higher order
-                                  // than the order (maximal 6) that
-                                  // will occur due to the order of
-                                  // the approximation of the
-                                  // boundary, i.e. the order of the
-                                  // mappings employed. Note that the
-                                  // integrand, the Jacobian
-                                  // determinant, is not a polynomial
-                                  // function (rather, it is a
-                                  // rational one), so we do not use
-                                  // Gauss quadrature in order to get
-                                  // the exact value of the integral
-                                  // as done often in finite element
-                                  // computations, but could as well
-                                  // have used any quadrature formula
-                                  // of like order instead.
-  const QGauss<dim> quadrature(4);
-
-                                  // Now start by looping over
-                                  // polynomial mapping degrees=1..4:
-  for (unsigned int degree=1; degree<5; ++degree)
-    {
-      std::cout << "Degree = " << degree << std::endl;
-
-                                      // First generate the
-                                      // triangulation, the boundary
-                                      // and the mapping object as
-                                      // already seen.
-      Triangulation<dim> triangulation;
-      GridGenerator::hyper_ball (triangulation);
-  
-      static const HyperBallBoundary<dim> boundary;
-      triangulation.set_boundary (0, boundary);
-
-      const MappingQ<dim> mapping (degree);
-
-                                      // We now create a dummy finite
-                                      // element. Here we could
-                                      // choose any finite element,
-                                      // as we are only interested in
-                                      // the `JxW' values provided by
-                                      // the FEValues object
-                                      // below. Nevertheless, we have
-                                      // to provide a finite element
-                                      // since in this example we
-                                      // abuse the FEValues class a
-                                      // little in that we only ask
-                                      // it to provide us with the
-                                      // weights of certain
-                                      // quadrature points, in
-                                      // contrast to the usual
-                                      // purpose (and name) of the
-                                      // FEValues class which is to
-                                      // provide the values of finite
-                                      // elements at these points.
-      const FE_Q<dim>     dummy_fe (1);
-
-                                      // Likewise, we need to create
-                                      // a DoFHandler object. We do
-                                      // not actually use it, but it
-                                      // will provide us with
-                                      // `active_cell_iterators' that
-                                      // are needed to reinitialize
-                                      // the FEValues object on each
-                                      // cell of the triangulation.
-      DoFHandler<dim> dof_handler (triangulation);
-
-                                      // Now we set up the FEValues
-                                      // object, giving the Mapping,
-                                      // the dummy finite element and
-                                      // the quadrature object to the
-                                      // constructor, together with
-                                      // the update flags asking for
-                                      // the `JxW' values at the
-                                      // quadrature points only. This
-                                      // tells the FEValues object
-                                      // that it needs not compute
-                                      // other quantities upon
-                                      // calling the <code>reinit</code>
-                                      // function, thus saving
-                                      // computation time.
-                                      //
-                                      // The most important
-                                      // difference in the
-                                      // construction of the FEValues
-                                      // object compared to previous
-                                      // example programs is that we
-                                      // pass a mapping object as
-                                      // first argument, which is to
-                                      // be used in the computation
-                                      // of the mapping from unit to
-                                      // real cell. In previous
-                                      // examples, this argument was
-                                      // omitted, resulting in the
-                                      // implicit use of an object of
-                                      // type MappingQ1.
-      FEValues<dim> fe_values (mapping, dummy_fe, quadrature,
-                               update_JxW_values);
-
-                                      // We employ an object of the
-                                      // ConvergenceTable class to
-                                      // store all important data
-                                      // like the approximated values
-                                      // for $\pi$ and the error with
-                                      // respect to the true value of
-                                      // $\pi$. We will also use
-                                      // functions provided by the
-                                      // ConvergenceTable class to
-                                      // compute convergence rates of
-                                      // the approximations to $\pi$.
-      ConvergenceTable table;
-
-                                      // Now we loop over several
-                                      // refinement steps of the
-                                      // triangulation.
-      for (unsigned int refinement=0; refinement<6;
-          ++refinement, triangulation.refine_global (1))
-       {
-                                          // In this loop we first
-                                          // add the number of active
-                                          // cells of the current
-                                          // triangulation to the
-                                          // table. This function
-                                          // automatically creates a
-                                          // table column with
-                                          // superscription `cells',
-                                          // in case this column was
-                                          // not created before.
-         table.add_value("cells", triangulation.n_active_cells());
-
-                                          // Then we distribute the
-                                          // degrees of freedom for
-                                          // the dummy finite
-                                          // element. Strictly
-                                          // speaking we do not need
-                                          // this function call in
-                                          // our special case but we
-                                          // call it to make the
-                                          // DoFHandler happy --
-                                          // otherwise it would throw
-                                          // an assertion in the
-                                          // FEValues::reinit
-                                          // function below.
-         dof_handler.distribute_dofs (dummy_fe);
-
-                                          // We define the variable
-                                          // area as `long double'
-                                          // like we did for the pi
-                                          // variable before.
-         long double area = 0;
-
-                                          // Now we loop over all
-                                          // cells, reinitialize the
-                                          // FEValues object for each
-                                          // cell, and add up all the
-                                          // `JxW' values for this
-                                          // cell to `area'...
-         typename DoFHandler<dim>::active_cell_iterator
-           cell = dof_handler.begin_active(),
-           endc = dof_handler.end();
-         for (; cell!=endc; ++cell)
-           {
-             fe_values.reinit (cell);
-             for (unsigned int i=0; i<fe_values.n_quadrature_points; ++i)
-               area += fe_values.JxW (i);
-           };
-
-                                          // ...and store the
-                                          // resulting area values
-                                          // and the errors in the
-                                          // table. We need a static
-                                          // cast to double as there
-                                          // is no add_value(string,
-                                          // long double) function
-                                          // implemented. Note that
-                                          // this also concerns the
-                                          // second call as the <code>fabs</code>
-                                          // function in the <code>std</code>
-                                          // namespace is overloaded on
-                                          // its argument types, so there
-                                          // exists a version taking
-                                          // and returning a <code>long double</code>,
-                                          // in contrast to the global
-                                          // namespace where only one such
-                                          // function is declared (which
-                                          // takes and returns a double).
-         table.add_value("eval.pi", static_cast<double> (area));
-         table.add_value("error",   static_cast<double> (std::fabs(area-pi)));
-       };
-
-                                      // We want to compute
-                                      // the convergence rates of the
-                                      // `error' column. Therefore we
-                                      // need to omit the other
-                                      // columns from the convergence
-                                      // rate evaluation before
-                                      // calling
-                                      // `evaluate_all_convergence_rates'
-      table.omit_column_from_convergence_rate_evaluation("cells");
-      table.omit_column_from_convergence_rate_evaluation("eval.pi");
-      table.evaluate_all_convergence_rates(ConvergenceTable::reduction_rate_log2);
-
-                                      // Finally we set the precision
-                                      // and scientific mode for
-                                      // output of some of the
-                                      // quantities...
-      table.set_precision("eval.pi", 16);
-      table.set_scientific("error", true);
-
-                                      // ...and write the whole table
-                                      // to std::cout.
-      table.write_text(std::cout);
-
-      std::cout << std::endl;
-    };
-}
-
-
-                                // The following, second function also
-                                // computes an approximation of $\pi$
-                                // but this time via the perimeter
-                                // $2\pi r$ of the domain instead
-                                // of the area. This function is only
-                                // a variation of the previous
-                                // function. So we will mainly give
-                                // documentation for the differences.
-template <int dim>
-void compute_pi_by_perimeter ()
-{
-  std::cout << "Computation of Pi by the perimeter:" << std::endl
-           << "===================================" << std::endl;
-
-                                  // We take the same order of
-                                  // quadrature but this time a
-                                  // `dim-1' dimensional quadrature
-                                  // as we will integrate over
-                                  // (boundary) lines rather than
-                                  // over cells.
-  const QGauss<dim-1> quadrature(4);
-
-                                  // We loop over all degrees, create
-                                  // the triangulation, the boundary,
-                                  // the mapping, the dummy
-                                  // finite element and the DoFHandler
-                                  // object as seen before.
-  for (unsigned int degree=1; degree<5; ++degree)
-    {
-      std::cout << "Degree = " << degree << std::endl;
-      Triangulation<dim> triangulation;
-      GridGenerator::hyper_ball (triangulation);
-  
-      static const HyperBallBoundary<dim> boundary;
-      triangulation.set_boundary (0, boundary);
-
-      const MappingQ<dim> mapping (degree);
-      const FE_Q<dim>     fe (1);
-
-      DoFHandler<dim> dof_handler (triangulation);
-
-                                      // Then we create a
-                                      // FEFaceValues object instead
-                                      // of a FEValues object as in
-                                      // the previous
-                                      // function. Again, we pass a
-                                      // mapping as first argument.
-      FEFaceValues<dim> fe_face_values (mapping, fe, quadrature,
-                                        update_JxW_values);
-      ConvergenceTable table;
-
-      for (unsigned int refinement=0; refinement<6;
-          ++refinement, triangulation.refine_global (1))
-       {
-         table.add_value("cells", triangulation.n_active_cells());
-
-         dof_handler.distribute_dofs (fe);
-
-                                          // Now we run over all
-                                          // cells and over all faces
-                                          // of each cell. Only the
-                                          // contributions of the
-                                          // `JxW' values on boundary
-                                          // faces are added to the
-                                          // long double variable
-                                          // `perimeter'.
-         typename DoFHandler<dim>::active_cell_iterator
-           cell = dof_handler.begin_active(),
-           endc = dof_handler.end();
-         long double perimeter = 0;
-         for (; cell!=endc; ++cell)
-           for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell; ++face_no)
-             if (cell->face(face_no)->at_boundary())
-               {
-                                                  // We reinit the
-                                                  // FEFaceValues
-                                                  // object with the
-                                                  // cell iterator
-                                                  // and the number
-                                                  // of the face.
-                 fe_face_values.reinit (cell, face_no);
-                 for (unsigned int i=0; i<fe_face_values.n_quadrature_points; ++i)
-                   perimeter += fe_face_values.JxW (i);
-               };
-                                          // Then store the evaluated
-                                          // values in the table...
-         table.add_value("eval.pi", static_cast<double> (perimeter/2.));
-         table.add_value("error",   static_cast<double> (std::fabs(perimeter/2.-pi)));
-       };
-
-                                      // ...and end this function as
-                                      // we did in the previous one:
-      table.omit_column_from_convergence_rate_evaluation("cells");
-      table.omit_column_from_convergence_rate_evaluation("eval.pi");
-      table.evaluate_all_convergence_rates(ConvergenceTable::reduction_rate_log2);
-
-      table.set_precision("eval.pi", 16);
-      table.set_scientific("error", true);
-
-      table.write_text(std::cout);
-
-      std::cout << std::endl;
-    };
+  using namespace dealii;
+
+                                  // Now, as we want to compute the
+                                  // value of $\pi$, we have to compare to
+                                  // somewhat. These are the first few
+                                  // digits of $\pi$, which we define
+                                  // beforehand for later use. Since we
+                                  // would like to compute the
+                                  // difference between two numbers
+                                  // which are quite accurate, with the
+                                  // accuracy of the computed
+                                  // approximation to $\pi$ being in the
+                                  // range of the number of digits
+                                  // which a double variable can hold,
+                                  // we rather declare the reference
+                                  // value as a <code>long double</code> and
+                                  // give it a number of extra digits:
+  const long double pi = 3.141592653589793238462643;
+
+
+
+                                  // Then, the first task will be to
+                                  // generate some output. Since this
+                                  // program is so small, we do not
+                                  // employ object oriented techniques
+                                  // in it and do not declare classes
+                                  // (although, of course, we use the
+                                  // object oriented features of the
+                                  // library). Rather, we just pack the
+                                  // functionality into separate
+                                  // functions. We make these functions
+                                  // templates on the number of space
+                                  // dimensions to conform to usual
+                                  // practice when using deal.II,
+                                  // although we will only use them for
+                                  // two space dimensions.
+                                  //
+                                  // The first of these functions just
+                                  // generates a triangulation of a
+                                  // circle (hyperball) and outputs the
+                                  // Qp mapping of its cells for
+                                  // different values of <code>p</code>. Then,
+                                  // we refine the grid once and do so
+                                  // again.
+  template <int dim>
+  void gnuplot_output()
+  {
+    std::cout << "Output of grids into gnuplot files:" << std::endl
+             << "===================================" << std::endl;
+
+                                    // So first generate a coarse
+                                    // triangulation of the circle and
+                                    // associate a suitable boundary
+                                    // description to it. Note that the
+                                    // default values of the
+                                    // HyperBallBoundary constructor
+                                    // are a center at the origin and a
+                                    // radius equals one.
+    Triangulation<dim> triangulation;
+    GridGenerator::hyper_ball (triangulation);
+    static const HyperBallBoundary<dim> boundary;
+    triangulation.set_boundary (0, boundary);
+
+                                    // Next generate output for this
+                                    // grid and for a once refined
+                                    // grid. Note that we have hidden
+                                    // the mesh refinement in the loop
+                                    // header, which might be uncommon
+                                    // but nevertheless works. Also it
+                                    // is strangely consistent with
+                                    // incrementing the loop index
+                                    // denoting the refinement level.
+    for (unsigned int refinement=0; refinement<2;
+        ++refinement, triangulation.refine_global(1))
+      {
+       std::cout << "Refinement level: " << refinement << std::endl;
+
+                                        // Then have a string which
+                                        // denotes the base part of the
+                                        // names of the files into
+                                        // which we write the
+                                        // output. Note that in the
+                                        // parentheses in the
+                                        // initializer we do arithmetic
+                                        // on characters, which assumes
+                                        // that first the characters
+                                        // denoting numbers are placed
+                                        // consecutively (which is
+                                        // probably true for all
+                                        // reasonable character sets
+                                        // nowadays), but also assumes
+                                        // that the increment
+                                        // <code>refinement</code> is less than
+                                        // ten. This is therefore more
+                                        // a quick hack if we know
+                                        // exactly the values which the
+                                        // increment can assume. A
+                                        // better implementation would
+                                        // use the
+                                        // <code>std::istringstream</code>
+                                        // class to generate a name.
+       std::string filename_base = "ball";
+       filename_base += '0'+refinement;
+
+                                        // Then output the present grid
+                                        // for Q1, Q2, and Q3 mappings:
+       for (unsigned int degree=1; degree<4; ++degree)
+         {
+           std::cout << "Degree = " << degree << std::endl;
+
+                                            // For this, first set up
+                                            // an object describing the
+                                            // mapping. This is done
+                                            // using the <code>MappingQ</code>
+                                            // class, which takes as
+                                            // argument to the
+                                            // constructor the
+                                            // polynomial degree which
+                                            // it shall use.
+           const MappingQ<dim> mapping (degree);
+                                            // We note one interesting
+                                            // fact: if you want a
+                                            // piecewise linear
+                                            // mapping, then you could
+                                            // give a value of <code>1</code> to
+                                            // the
+                                            // constructor. However,
+                                            // for linear mappings, so
+                                            // many things can be
+                                            // generated simpler that
+                                            // there is another class,
+                                            // called <code>MappingQ1</code>
+                                            // which does exactly the
+                                            // same is if you gave an
+                                            // degree of <code>1</code> to the
+                                            // <code>MappingQ</code> class, but
+                                            // does so significantly
+                                            // faster. <code>MappingQ1</code> is
+                                            // also the class that is
+                                            // implicitly used
+                                            // throughout the library
+                                            // in many functions and
+                                            // classes if you do not
+                                            // specify another mapping
+                                            // explicitly.
+
+
+                                            // In degree to actually
+                                            // write out the present
+                                            // grid with this mapping,
+                                            // we set up an object
+                                            // which we will use for
+                                            // output. We will generate
+                                            // Gnuplot output, which
+                                            // consists of a set of
+                                            // lines describing the
+                                            // mapped triangulation. By
+                                            // default, only one line
+                                            // is drawn for each face
+                                            // of the triangulation,
+                                            // but since we want to
+                                            // explicitely see the
+                                            // effect of the mapping,
+                                            // we want to have the
+                                            // faces in more
+                                            // detail. This can be done
+                                            // by passing the output
+                                            // object a structure which
+                                            // contains some flags. In
+                                            // the present case, since
+                                            // Gnuplot can only draw
+                                            // straight lines, we
+                                            // output a number of
+                                            // additional points on the
+                                            // faces so that each face
+                                            // is drawn by 30 small
+                                            // lines instead of only
+                                            // one. This is sufficient
+                                            // to give us the
+                                            // impression of seeing a
+                                            // curved line, rather than
+                                            // a set of straight lines.
+           GridOut grid_out;
+           GridOutFlags::Gnuplot gnuplot_flags(false, 30);
+           grid_out.set_flags(gnuplot_flags);
+
+                                            // Finally, generate a
+                                            // filename and a file for
+                                            // output using the same
+                                            // evil hack as above:
+           std::string filename = filename_base+"_mapping_q";
+           filename += ('0'+degree);
+           filename += ".dat";
+           std::ofstream gnuplot_file (filename.c_str());
+
+                                            // Then write out the
+                                            // triangulation to this
+                                            // file. The last argument
+                                            // of the function is a
+                                            // pointer to a mapping
+                                            // object. This argument
+                                            // has a default value, and
+                                            // if no value is given a
+                                            // simple <code>MappingQ1</code>
+                                            // object is taken, which
+                                            // we briefly described
+                                            // above. This would then
+                                            // result in a piecewise
+                                            // linear approximation of
+                                            // the true boundary in the
+                                            // output.
+           grid_out.write_gnuplot (triangulation, gnuplot_file, &mapping);
+         }
+       std::cout << std::endl;
+      }
+  }
+
+                                  // Now we proceed with the main part
+                                  // of the code, the approximation of
+                                  // $\pi$. The area of a circle is of
+                                  // course given by $\pi r^2$, so
+                                  // having a circle of radius 1, the
+                                  // area represents just the number
+                                  // that is searched for. The
+                                  // numerical computation of the area
+                                  // is performed by integrating the
+                                  // constant function of value 1 over
+                                  // the whole computational domain,
+                                  // i.e. by computing the areas
+                                  // $\int_K 1 dx=\int_{\hat K} 1
+                                  // \ \textrm{det}\ J(\hat x) d\hat x
+                                  // \approx \sum_i \textrm{det}
+                                  // \ J(\hat x_i)w(\hat x_i)$, where the
+                                  // sum extends over all quadrature
+                                  // points on all active cells in the
+                                  // triangulation, with $w(x_i)$ being
+                                  // the weight of quadrature point
+                                  // $x_i$. The integrals on each cell
+                                  // are approximated by numerical
+                                  // quadrature, hence the only
+                                  // additional ingredient we need is
+                                  // to set up a FEValues object that
+                                  // provides the corresponding `JxW'
+                                  // values of each cell. (Note that
+                                  // `JxW' is meant to abbreviate
+                                  // <code>Jacobian determinant times
+                                  // weight</code>; since in numerical
+                                  // quadrature the two factors always
+                                  // occur at the same places, we only
+                                  // offer the combined quantity,
+                                  // rather than two separate ones.) We
+                                  // note that here we won't use the
+                                  // FEValues object in its original
+                                  // purpose, i.e. for the computation
+                                  // of values of basis functions of a
+                                  // specific finite element at certain
+                                  // quadrature points. Rather, we use
+                                  // it only to gain the `JxW' at the
+                                  // quadrature points, irrespective of
+                                  // the (dummy) finite element we will
+                                  // give to the constructor of the
+                                  // FEValues object. The actual finite
+                                  // element given to the FEValues
+                                  // object is not used at all, so we
+                                  // could give any.
+  template <int dim>
+  void compute_pi_by_area ()
+  {
+    std::cout << "Computation of Pi by the area:" << std::endl
+             << "==============================" << std::endl;
+
+                                    // For the numerical quadrature on
+                                    // all cells we employ a quadrature
+                                    // rule of sufficiently high
+                                    // degree. We choose QGauss that
+                                    // is of order 8 (4 points), to be sure that
+                                    // the errors due to numerical
+                                    // quadrature are of higher order
+                                    // than the order (maximal 6) that
+                                    // will occur due to the order of
+                                    // the approximation of the
+                                    // boundary, i.e. the order of the
+                                    // mappings employed. Note that the
+                                    // integrand, the Jacobian
+                                    // determinant, is not a polynomial
+                                    // function (rather, it is a
+                                    // rational one), so we do not use
+                                    // Gauss quadrature in order to get
+                                    // the exact value of the integral
+                                    // as done often in finite element
+                                    // computations, but could as well
+                                    // have used any quadrature formula
+                                    // of like order instead.
+    const QGauss<dim> quadrature(4);
+
+                                    // Now start by looping over
+                                    // polynomial mapping degrees=1..4:
+    for (unsigned int degree=1; degree<5; ++degree)
+      {
+       std::cout << "Degree = " << degree << std::endl;
+
+                                        // First generate the
+                                        // triangulation, the boundary
+                                        // and the mapping object as
+                                        // already seen.
+       Triangulation<dim> triangulation;
+       GridGenerator::hyper_ball (triangulation);
+
+       static const HyperBallBoundary<dim> boundary;
+       triangulation.set_boundary (0, boundary);
+
+       const MappingQ<dim> mapping (degree);
+
+                                        // We now create a dummy finite
+                                        // element. Here we could
+                                        // choose any finite element,
+                                        // as we are only interested in
+                                        // the `JxW' values provided by
+                                        // the FEValues object
+                                        // below. Nevertheless, we have
+                                        // to provide a finite element
+                                        // since in this example we
+                                        // abuse the FEValues class a
+                                        // little in that we only ask
+                                        // it to provide us with the
+                                        // weights of certain
+                                        // quadrature points, in
+                                        // contrast to the usual
+                                        // purpose (and name) of the
+                                        // FEValues class which is to
+                                        // provide the values of finite
+                                        // elements at these points.
+       const FE_Q<dim>     dummy_fe (1);
+
+                                        // Likewise, we need to create
+                                        // a DoFHandler object. We do
+                                        // not actually use it, but it
+                                        // will provide us with
+                                        // `active_cell_iterators' that
+                                        // are needed to reinitialize
+                                        // the FEValues object on each
+                                        // cell of the triangulation.
+       DoFHandler<dim> dof_handler (triangulation);
+
+                                        // Now we set up the FEValues
+                                        // object, giving the Mapping,
+                                        // the dummy finite element and
+                                        // the quadrature object to the
+                                        // constructor, together with
+                                        // the update flags asking for
+                                        // the `JxW' values at the
+                                        // quadrature points only. This
+                                        // tells the FEValues object
+                                        // that it needs not compute
+                                        // other quantities upon
+                                        // calling the <code>reinit</code>
+                                        // function, thus saving
+                                        // computation time.
+                                        //
+                                        // The most important
+                                        // difference in the
+                                        // construction of the FEValues
+                                        // object compared to previous
+                                        // example programs is that we
+                                        // pass a mapping object as
+                                        // first argument, which is to
+                                        // be used in the computation
+                                        // of the mapping from unit to
+                                        // real cell. In previous
+                                        // examples, this argument was
+                                        // omitted, resulting in the
+                                        // implicit use of an object of
+                                        // type MappingQ1.
+       FEValues<dim> fe_values (mapping, dummy_fe, quadrature,
+                                update_JxW_values);
+
+                                        // We employ an object of the
+                                        // ConvergenceTable class to
+                                        // store all important data
+                                        // like the approximated values
+                                        // for $\pi$ and the error with
+                                        // respect to the true value of
+                                        // $\pi$. We will also use
+                                        // functions provided by the
+                                        // ConvergenceTable class to
+                                        // compute convergence rates of
+                                        // the approximations to $\pi$.
+       ConvergenceTable table;
+
+                                        // Now we loop over several
+                                        // refinement steps of the
+                                        // triangulation.
+       for (unsigned int refinement=0; refinement<6;
+            ++refinement, triangulation.refine_global (1))
+         {
+                                            // In this loop we first
+                                            // add the number of active
+                                            // cells of the current
+                                            // triangulation to the
+                                            // table. This function
+                                            // automatically creates a
+                                            // table column with
+                                            // superscription `cells',
+                                            // in case this column was
+                                            // not created before.
+           table.add_value("cells", triangulation.n_active_cells());
+
+                                            // Then we distribute the
+                                            // degrees of freedom for
+                                            // the dummy finite
+                                            // element. Strictly
+                                            // speaking we do not need
+                                            // this function call in
+                                            // our special case but we
+                                            // call it to make the
+                                            // DoFHandler happy --
+                                            // otherwise it would throw
+                                            // an assertion in the
+                                            // FEValues::reinit
+                                            // function below.
+           dof_handler.distribute_dofs (dummy_fe);
+
+                                            // We define the variable
+                                            // area as `long double'
+                                            // like we did for the pi
+                                            // variable before.
+           long double area = 0;
+
+                                            // Now we loop over all
+                                            // cells, reinitialize the
+                                            // FEValues object for each
+                                            // cell, and add up all the
+                                            // `JxW' values for this
+                                            // cell to `area'...
+           typename DoFHandler<dim>::active_cell_iterator
+             cell = dof_handler.begin_active(),
+             endc = dof_handler.end();
+           for (; cell!=endc; ++cell)
+             {
+               fe_values.reinit (cell);
+               for (unsigned int i=0; i<fe_values.n_quadrature_points; ++i)
+                 area += fe_values.JxW (i);
+             };
+
+                                            // ...and store the
+                                            // resulting area values
+                                            // and the errors in the
+                                            // table. We need a static
+                                            // cast to double as there
+                                            // is no add_value(string,
+                                            // long double) function
+                                            // implemented. Note that
+                                            // this also concerns the
+                                            // second call as the <code>fabs</code>
+                                            // function in the <code>std</code>
+                                            // namespace is overloaded on
+                                            // its argument types, so there
+                                            // exists a version taking
+                                            // and returning a <code>long double</code>,
+                                            // in contrast to the global
+                                            // namespace where only one such
+                                            // function is declared (which
+                                            // takes and returns a double).
+           table.add_value("eval.pi", static_cast<double> (area));
+           table.add_value("error",   static_cast<double> (std::fabs(area-pi)));
+         };
+
+                                        // We want to compute
+                                        // the convergence rates of the
+                                        // `error' column. Therefore we
+                                        // need to omit the other
+                                        // columns from the convergence
+                                        // rate evaluation before
+                                        // calling
+                                        // `evaluate_all_convergence_rates'
+       table.omit_column_from_convergence_rate_evaluation("cells");
+       table.omit_column_from_convergence_rate_evaluation("eval.pi");
+       table.evaluate_all_convergence_rates(ConvergenceTable::reduction_rate_log2);
+
+                                        // Finally we set the precision
+                                        // and scientific mode for
+                                        // output of some of the
+                                        // quantities...
+       table.set_precision("eval.pi", 16);
+       table.set_scientific("error", true);
+
+                                        // ...and write the whole table
+                                        // to std::cout.
+       table.write_text(std::cout);
+
+       std::cout << std::endl;
+      };
+  }
+
+
+                                  // The following, second function also
+                                  // computes an approximation of $\pi$
+                                  // but this time via the perimeter
+                                  // $2\pi r$ of the domain instead
+                                  // of the area. This function is only
+                                  // a variation of the previous
+                                  // function. So we will mainly give
+                                  // documentation for the differences.
+  template <int dim>
+  void compute_pi_by_perimeter ()
+  {
+    std::cout << "Computation of Pi by the perimeter:" << std::endl
+             << "===================================" << std::endl;
+
+                                    // We take the same order of
+                                    // quadrature but this time a
+                                    // `dim-1' dimensional quadrature
+                                    // as we will integrate over
+                                    // (boundary) lines rather than
+                                    // over cells.
+    const QGauss<dim-1> quadrature(4);
+
+                                    // We loop over all degrees, create
+                                    // the triangulation, the boundary,
+                                    // the mapping, the dummy
+                                    // finite element and the DoFHandler
+                                    // object as seen before.
+    for (unsigned int degree=1; degree<5; ++degree)
+      {
+       std::cout << "Degree = " << degree << std::endl;
+       Triangulation<dim> triangulation;
+       GridGenerator::hyper_ball (triangulation);
+
+       static const HyperBallBoundary<dim> boundary;
+       triangulation.set_boundary (0, boundary);
+
+       const MappingQ<dim> mapping (degree);
+       const FE_Q<dim>     fe (1);
+
+       DoFHandler<dim> dof_handler (triangulation);
+
+                                        // Then we create a
+                                        // FEFaceValues object instead
+                                        // of a FEValues object as in
+                                        // the previous
+                                        // function. Again, we pass a
+                                        // mapping as first argument.
+       FEFaceValues<dim> fe_face_values (mapping, fe, quadrature,
+                                         update_JxW_values);
+       ConvergenceTable table;
+
+       for (unsigned int refinement=0; refinement<6;
+            ++refinement, triangulation.refine_global (1))
+         {
+           table.add_value("cells", triangulation.n_active_cells());
+
+           dof_handler.distribute_dofs (fe);
+
+                                            // Now we run over all
+                                            // cells and over all faces
+                                            // of each cell. Only the
+                                            // contributions of the
+                                            // `JxW' values on boundary
+                                            // faces are added to the
+                                            // long double variable
+                                            // `perimeter'.
+           typename DoFHandler<dim>::active_cell_iterator
+             cell = dof_handler.begin_active(),
+             endc = dof_handler.end();
+           long double perimeter = 0;
+           for (; cell!=endc; ++cell)
+             for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell; ++face_no)
+               if (cell->face(face_no)->at_boundary())
+                 {
+                                                    // We reinit the
+                                                    // FEFaceValues
+                                                    // object with the
+                                                    // cell iterator
+                                                    // and the number
+                                                    // of the face.
+                   fe_face_values.reinit (cell, face_no);
+                   for (unsigned int i=0; i<fe_face_values.n_quadrature_points; ++i)
+                     perimeter += fe_face_values.JxW (i);
+                 };
+                                            // Then store the evaluated
+                                            // values in the table...
+           table.add_value("eval.pi", static_cast<double> (perimeter/2.));
+           table.add_value("error",   static_cast<double> (std::fabs(perimeter/2.-pi)));
+         };
+
+                                        // ...and end this function as
+                                        // we did in the previous one:
+       table.omit_column_from_convergence_rate_evaluation("cells");
+       table.omit_column_from_convergence_rate_evaluation("eval.pi");
+       table.evaluate_all_convergence_rates(ConvergenceTable::reduction_rate_log2);
+
+       table.set_precision("eval.pi", 16);
+       table.set_scientific("error", true);
+
+       table.write_text(std::cout);
+
+       std::cout << std::endl;
+      };
+  }
 }
 
 
                                 // The following main function just
                                 // calls the above functions in the
                                 // order of their appearance.
-int main () 
+int main ()
 {
   std::cout.precision (16);
 
-  gnuplot_output<2>();
+  Step10::gnuplot_output<2>();
+
+  Step10::compute_pi_by_area<2> ();
+  Step10::compute_pi_by_perimeter<2> ();
 
-  compute_pi_by_area<2> ();
-  compute_pi_by_perimeter<2> ();
-  
   return 0;
 }

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.