SymmetricTensor<2, dim, Number>
Physics::Elasticity::Kinematics::F_vol (const Tensor<2, dim, Number> &F)
{
- return NumberType<Number>::value(std::pow(determinant(F),1.0/dim))*static_cast< SymmetricTensor<2,dim,Number> >(unit_symmetric_tensor<dim>());
+ return internal::NumberType<Number>::value(std::pow(determinant(F),1.0/dim))*static_cast< SymmetricTensor<2,dim,Number> >(unit_symmetric_tensor<dim>());
}
SymmetricTensor<2, dim, Number>
Physics::Elasticity::Kinematics::E (const Tensor<2, dim, Number> &F)
{
- return NumberType<Number>::value(0.5)*(C(F) - static_cast<SymmetricTensor<2,dim,Number> >(StandardTensors<dim>::I));
+ return internal::NumberType<Number>::value(0.5)*(C(F) - static_cast<SymmetricTensor<2,dim,Number> >(StandardTensors<dim>::I));
}
Physics::Elasticity::Kinematics::e (const Tensor<2, dim, Number> &F)
{
const Tensor<2, dim, Number> F_inv = invert(F);
- return NumberType<Number>::value(0.5)*symmetrize(static_cast<SymmetricTensor<2,dim,Number> >(StandardTensors<dim>::I) - transpose(F_inv)*F_inv);
+ return internal::NumberType<Number>::value(0.5)*symmetrize(static_cast<SymmetricTensor<2,dim,Number> >(StandardTensors<dim>::I) - transpose(F_inv)*F_inv);
}
// This could be implemented as w = l-d, but that would mean computing "l"
// a second time.
const Tensor<2,dim> grad_v = l(F,dF_dt);
- return NumberType<Number>::value*(grad_v - transpose(grad_v)) ;
+ return internal::NumberType<Number>::value(0.5)*(grad_v - transpose(grad_v));
}
#endif // DOXYGEN