+++ /dev/null
-# $Id$
-# Copyright W. Bangerth, University of Heidelberg, 1998
-
-
-# list the directories we want to visit
-subdirs = grid/ dof/ poisson/ convergence/ error-estimation/ multigrid/ step-by-step/
-
-# define lists of targets: for each directory we produce a target name
-# for compilation, running and cleaning by appending the action to
-# the directory name (replacing the slash by ".action")
-compile = $(subdirs:/=.compile)
-run = $(subdirs:/=.run)
-clean = $(subdirs:/=.clean)
-
-# define global targets which are to be excuted in every subdirectory
-compile: $(compile)
-run : $(run)
-# for cleaning up: do this also for the present directory
-clean : $(clean)
- -rm -f *~
-
-
-# define the action of the targets for the specific subdirectories
-$(compile) :
- cd $(@:.compile=) ; $(MAKE)
-
-$(run) :
- cd $(@:.run=) ; $(MAKE) run
-
-$(clean) :
- -cd $(@:.clean=) ; $(MAKE) clean
+++ /dev/null
-The example applications in the subdirectories (apart from the
-'step-by-step' directory) were written in the early stages of the
-library and served more the task of verification than as proper
-examples. For this reason, they are not very well documented and are
-probably no good examples anyway.
-
-One, the multigrid example, does not even what its name may suggest.
-
-We excuse for the fact that they might not serve as good
-examples. Better ones are planned and in parts written, but not yet
-available at present. Sorry.
+++ /dev/null
-convergence
-Makefile.dep
-*.go
-*.o
+++ /dev/null
-# $Id$
-# Copyright W. Bangerth, University of Heidelberg, 1998, 1999, 2000
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = convergence
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../..
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g = $(lib-deal2-2d.g) \
- $(lib-lac.g) \
- $(lib-base.g)
-libs.o = $(lib-deal2-2d.o) \
- $(lib-lac.o) \
- $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
- libraries = $(target).go $(libs.g)
- flags = $(CXXFLAGS.g)
-else
- libraries = $(target).go $(libs.o)
- flags = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
- libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
- @echo ============================ Linking $@
- @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
- @echo ============================ Running $<
- @./$(target)
- gnuplot make_ps
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
- -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
- @echo ==============debug========= $(<F)
- @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
- @echo ==============optimized===== $(<F)
- @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-/h-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script. Since the
-# script prefixes the output names by `lib/o' or `lib/go' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
- $(shell echo $(include-path-base)/base/*.h \
- $(include-path-lac)/lac/*.h \
- $(include-path-deal2)/*/*.h)
- @echo ============================ Remaking Makefile
- @perl $D/common/scripts/make_dependencies.pl $(INCLUDE) $(target).cc \
- | perl -pi -e 's!lib/g?o/!!g;' \
- > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
+++ /dev/null
-/* $Id$ */
-/* Copyright W. Bangerth, University of Heidelberg, 1998 */
-
-
-#include <base/logstream.h>
-#include <grid/tria.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria_boundary_lib.h>
-#include <dofs/dof_handler.h>
-#include <dofs/dof_accessor.h>
-#include <dofs/dof_constraints.h>
-#include <dofs/dof_tools.h>
-#include <grid/grid_generator.h>
-#include <base/function.h>
-#include <numerics/data_out.h>
-#include <fe/fe_lib.lagrange.h>
-#include <fe/fe_lib.criss_cross.h>
-#include <base/quadrature_lib.h>
-#include <numerics/base.h>
-#include <numerics/assembler.h>
-#include <numerics/vectors.h>
-#include <lac/vector.h>
-
-#include <map>
-#include <fstream>
-#include <cmath>
-#include <string>
-#include <cstdlib>
-
-
-
-
-
-template <int dim>
-class PoissonEquation : public Equation<dim> {
- public:
- PoissonEquation (const Function<dim> &rhs) :
- Equation<dim>(1),
- right_hand_side (rhs) {};
-
- virtual void assemble (FullMatrix<double> &cell_matrix,
- Vector<double> &rhs,
- const FEValues<dim> &fe_values,
- const DoFHandler<dim>::cell_iterator &cell) const;
- virtual void assemble (FullMatrix<double> &cell_matrix,
- const FEValues<dim> &fe_values,
- const DoFHandler<dim>::cell_iterator &cell) const;
- virtual void assemble (Vector<double> &rhs,
- const FEValues<dim> &fe_values,
- const DoFHandler<dim>::cell_iterator &cell) const;
- protected:
- const Function<dim> &right_hand_side;
-};
-
-
-
-
-
-
-template <int dim>
-class PoissonProblem : public ProblemBase<dim> {
- public:
- PoissonProblem (unsigned int order);
- ~PoissonProblem ();
-
- void clear ();
- void create_new ();
- int run (unsigned int level);
- void print_history (string filename) const;
-
- protected:
- Triangulation<dim> *tria;
- DoFHandler<dim> *dof;
-
- Function<dim> *rhs;
- Function<dim> *boundary_values;
-
- vector<double> l1_error, l2_error, linfty_error, h1_seminorm_error, h1_error;
- vector<int> n_dofs;
-
- unsigned int order;
-};
-
-
-
-
-
-/**
- Right hand side constructed such that the exact solution is
- $sin(2 pi x) + sin(2 pi y)$
- */
-template <int dim>
-class RHSPoly : public Function<dim> {
- public:
- /**
- * Return the value of the function
- * at the given point.
- */
- virtual double value (const Point<dim> &p,
- const unsigned int component) const;
-};
-
-
-
-template <int dim>
-class Solution : public Function<dim> {
- public:
- /**
- * Return the value of the function
- * at the given point.
- */
- virtual double value (const Point<dim> &p,
- const unsigned int component) const;
- /**
- * Return the gradient of the function
- * at the given point.
- */
- virtual Tensor<1,dim> gradient (const Point<dim> &p,
- const unsigned int component) const;
-};
-
-
-
-
-template <>
-double RHSPoly<2>::value (const Point<2> &p,
- const unsigned int) const {
- const double x = p(0),
- y = p(1);
- const double pi= 3.1415926536;
- return 4*pi*pi*(sin(2*pi*x)+sin(2*pi*y));
-};
-
-
-
-template <>
-double Solution<2>::value (const Point<2> &p,
- const unsigned int) const {
- const double x = p(0),
- y = p(1);
- const double pi= 3.1415926536;
- return sin(2*pi*x)+sin(2*pi*y);
-};
-
-
-template <>
-Tensor<1,2> Solution<2>::gradient (const Point<2> &p,
- const unsigned int) const {
- const double x = p(0),
- y = p(1);
- const double pi= 3.1415926536;
- return Point<2> (2*pi*cos(2*pi*x),
- 2*pi*cos(2*pi*y));
-};
-
-
-
-
-
-template <>
-void PoissonEquation<2>::assemble (FullMatrix<double> &cell_matrix,
- Vector<double> &rhs,
- const FEValues<2> &fe_values,
- const DoFHandler<2>::cell_iterator &) const {
- for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
- for (unsigned int i=0; i<fe_values.dofs_per_cell; ++i)
- {
- for (unsigned int j=0; j<fe_values.dofs_per_cell; ++j)
- cell_matrix(i,j) += (fe_values.shape_grad(i,point) *
- fe_values.shape_grad(j,point)) *
- fe_values.JxW(point);
- rhs(i) += fe_values.shape_value(i,point) *
- right_hand_side.value(fe_values.quadrature_point(point)) *
- fe_values.JxW(point);
- };
-};
-
-
-
-template <int dim>
-void PoissonEquation<dim>::assemble (FullMatrix<double> &,
- const FEValues<dim> &,
- const DoFHandler<dim>::cell_iterator &) const {
- Assert (false, ExcPureVirtualFunctionCalled());
-};
-
-
-
-template <int dim>
-void PoissonEquation<dim>::assemble (Vector<double> &,
- const FEValues<dim> &,
- const DoFHandler<dim>::cell_iterator &) const {
- Assert (false, ExcPureVirtualFunctionCalled());
-};
-
-
-
-
-
-
-
-
-
-template <int dim>
-PoissonProblem<dim>::PoissonProblem (unsigned int order) :
- tria(0), dof(0), rhs(0),
- boundary_values(0), order(order) {};
-
-
-template <int dim>
-PoissonProblem<dim>::~PoissonProblem ()
-{
- clear ();
-};
-
-
-
-template <int dim>
-void PoissonProblem<dim>::clear () {
- if (dof != 0) {
- delete dof;
- dof = 0;
- };
-
- if (tria != 0) {
- delete tria;
- tria = 0;
- };
-
-
- // make it known to the underlying
- // ProblemBase that tria and dof
- // are already deleted
- set_tria_and_dof (tria, dof);
-
- if (rhs != 0)
- {
- delete rhs;
- rhs = 0;
- };
-
- if (boundary_values != 0)
- {
- delete boundary_values;
- boundary_values = 0;
- };
-
- ProblemBase<dim>::clear ();
-};
-
-
-
-
-template <int dim>
-void PoissonProblem<dim>::create_new () {
- clear ();
-
- tria = new Triangulation<dim>();
- dof = new DoFHandler<dim> (*tria);
- set_tria_and_dof (tria, dof);
-};
-
-
-
-
-template <int dim>
-int PoissonProblem<dim>::run (const unsigned int level) {
- create_new ();
-
- cout << "Refinement level = " << level
- << ", using elements of type <";
- switch (order)
- {
- case 0:
- cout << "criss-cross";
- break;
- default:
- cout << "Lagrange-" << order;
- break;
- };
- cout << ">" << endl;
-
- cout << " Making grid... ";
- GridGenerator::hyper_ball (*tria);
- HyperBallBoundary<dim> boundary_description;
- tria->set_boundary (0, boundary_description);
- tria->begin_active()->set_refine_flag();
- (++(++(tria->begin_active())))->set_refine_flag();
- tria->execute_coarsening_and_refinement ();
- tria->refine_global (level);
- cout << tria->n_active_cells() << " active cells." << endl;
-
- rhs = new RHSPoly<dim>();
- boundary_values = new Solution<dim> ();
-
-
- FiniteElement<dim> *fe;
- PoissonEquation<dim> equation (*rhs);
- Quadrature<dim> *quadrature;
- Quadrature<dim-1> *boundary_quadrature;
- switch (order) {
- case 0:
- fe = new FECrissCross<dim>();
- quadrature = new QCrissCross1<dim>();
- boundary_quadrature = new QGauss2<dim-1>();
- break;
- case 1:
- fe = new FEQ1<dim>();
- quadrature = new QGauss3<dim>();
- boundary_quadrature = new QGauss2<dim-1>();
- break;
- case 2:
- fe = new FEQ2<dim>();
- quadrature = new QGauss4<dim>();
- boundary_quadrature = new QGauss3<dim-1>();
- break;
- case 3:
- fe = new FEQ3<dim>();
- quadrature = new QGauss5<dim>();
- boundary_quadrature = new QGauss4<dim-1>();
- break;
- case 4:
- fe = new FEQ4<dim>();
- quadrature = new QGauss6<dim>();
- boundary_quadrature = new QGauss5<dim-1>();
- break;
- default:
- return 100000;
- };
-
- cout << " Distributing dofs... ";
- dof->distribute_dofs (*fe);
- cout << dof->n_dofs() << " degrees of freedom." << endl;
- n_dofs.push_back (dof->n_dofs());
-
- cout << " Assembling matrices..." << endl;
- UpdateFlags update_flags = UpdateFlags(update_values | update_q_points |
- update_gradients | update_JxW_values);
-
- ProblemBase<dim>::FunctionMap dirichlet_bc;
- dirichlet_bc[0] = boundary_values;
- assemble (equation, *quadrature, update_flags, dirichlet_bc);
-
- cout << " Solving..." << endl;
- solve ();
-
- Solution<dim> sol;
- Vector<float> l1_error_per_cell, l2_error_per_cell, linfty_error_per_cell;
- Vector<float> h1_seminorm_error_per_cell, h1_error_per_cell;
-
- cout << " Calculating L1 error... ";
- VectorTools::integrate_difference (*dof_handler,
- solution, sol,
- l1_error_per_cell,
- *quadrature, L1_norm);
- cout << l1_error_per_cell.l1_norm() << endl;
- l1_error.push_back (l1_error_per_cell.l1_norm());
-
- cout << " Calculating L2 error... ";
- VectorTools::integrate_difference (*dof_handler,
- solution, sol,
- l2_error_per_cell,
- *quadrature, L2_norm);
- cout << l2_error_per_cell.l2_norm() << endl;
- l2_error.push_back (l2_error_per_cell.l2_norm());
-
- cout << " Calculating L-infinity error... ";
- VectorTools::integrate_difference (*dof_handler,
- solution, sol,
- linfty_error_per_cell,
- *quadrature, Linfty_norm);
- cout << linfty_error_per_cell.linfty_norm() << endl;
- linfty_error.push_back (linfty_error_per_cell.linfty_norm());
-
- cout << " Calculating H1-seminorm error... ";
- VectorTools::integrate_difference (*dof_handler,
- solution, sol,
- h1_seminorm_error_per_cell,
- *quadrature, H1_seminorm);
- cout << h1_seminorm_error_per_cell.l2_norm() << endl;
- h1_seminorm_error.push_back (h1_seminorm_error_per_cell.l2_norm());
-
- cout << " Calculating H1 error... ";
- VectorTools::integrate_difference (*dof_handler,
- solution, sol,
- h1_error_per_cell,
- *quadrature, H1_norm);
- cout << h1_error_per_cell.l2_norm() << endl;
- h1_error.push_back (h1_error_per_cell.l2_norm());
-
- if (dof->n_dofs()<=5000)
- {
- Vector<double> l1_error_per_dof(dof->n_dofs());
- Vector<double> l2_error_per_dof(dof->n_dofs());
- Vector<double> linfty_error_per_dof(dof->n_dofs());
- Vector<double> h1_seminorm_error_per_dof(dof->n_dofs());
- Vector<double> h1_error_per_dof(dof->n_dofs());
- DoFTools::distribute_cell_to_dof_vector (*dof, l1_error_per_cell, l1_error_per_dof);
- DoFTools::distribute_cell_to_dof_vector (*dof, l2_error_per_cell, l2_error_per_dof);
- DoFTools::distribute_cell_to_dof_vector (*dof, linfty_error_per_cell,
- linfty_error_per_dof);
- DoFTools::distribute_cell_to_dof_vector (*dof, h1_seminorm_error_per_cell,
- h1_seminorm_error_per_dof);
- DoFTools::distribute_cell_to_dof_vector (*dof, h1_error_per_cell, h1_error_per_dof);
-
-// Vector<double> projected_solution;
-// ConstraintMatrix constraints;
-// constraints.close ();
-// VectorTools::project (*dof, constraints, *fe,
-// StraightBoundary<dim>(), *quadrature,
-// sol, projected_solution, false,
-// *boundary_quadrature);
-// cout << " Calculating L2 error of projected solution... ";
-// VectorTools::integrate_difference (*dof_handler,
-// projected_solution, sol,
-// l2_error_per_cell,
-// *quadrature, *fe, L2_norm);
-// cout << l2_error_per_cell.l2_norm() << endl;
-
-
- string filename;
- filename = ('0'+order);
- filename += ".";
- filename += ('0'+level);
- filename += ".ucd";
- cout << " Writing error plots to <" << filename << ">..." << endl;
-
- DataOut<dim> out;
- ofstream o(filename.c_str());
- fill_data (out);
- out.add_data_vector (l1_error_per_dof, "L1_Error");
- out.add_data_vector (l2_error_per_dof, "L2_Error");
- out.add_data_vector (linfty_error_per_dof, "Linfty_Error");
- out.add_data_vector (h1_seminorm_error_per_dof, "H1_seminorm_Error");
- out.add_data_vector (h1_error_per_dof, "H1_Error");
- out.build_patches ();
- out.write_ucd (o);
- o.close ();
- }
- else
- cout << " Not writing error as grid." << endl;
-
- cout << endl;
-
- const unsigned int n_dofs = dof->n_dofs();
- // release the lock that the dof object
- // has to the finite element object
- dof->clear ();
- tria->set_boundary (0);
-
- delete fe;
- delete quadrature;
- delete boundary_quadrature;
-
- return n_dofs;
-};
-
-
-template <int dim>
-void PoissonProblem<dim>::print_history (string filename) const {
- ofstream out(filename.c_str());
- out << "# n_dofs l1_error l2_error linfty_error h1_seminorm_error h1_error"
- << endl;
- for (unsigned int i=0; i<n_dofs.size(); ++i)
- out << n_dofs[i]
- << " "
- << l1_error[i] << " "
- << l2_error[i] << " "
- << linfty_error[i] << " "
- << h1_seminorm_error[i] << " "
- << h1_error[i] << endl;
-
- double average_l1=0,
- average_l2=0,
- average_linfty=0,
- average_h1_semi=0,
- average_h1=0;
- for (unsigned int i=1; i<n_dofs.size(); ++i)
- {
- average_l1 += l1_error[i]/l1_error[i-1];
- average_l2 += l2_error[i]/l2_error[i-1];
- average_linfty += linfty_error[i]/linfty_error[i-1];
- average_h1_semi += h1_seminorm_error[i]/h1_seminorm_error[i-1];
- average_h1 += h1_error[i]/h1_error[i-1];
- };
-
- average_l1 /= (l1_error.size()-1);
- average_l2 /= (l1_error.size()-1);
- average_linfty /= (l1_error.size()-1);
- average_h1_semi /= (l1_error.size()-1);
- average_h1 /= (l1_error.size()-1);
-
- cout << "==========================================================\n";
- cout << "Average error reduction rates for h->h/2:" << endl;
- cout << " L1 error : " << 1./average_l1 << endl
- << " L2 error : " << 1./average_l2 << endl
- << " Linfty error : " << 1./average_linfty << endl
- << " H1 seminorm error: " << 1./average_h1_semi << endl
- << " H1 error : " << 1./average_h1 << endl;
- cout << "==========================================================\n";
- cout << "==========================================================\n";
-};
-
-
-
-
-int main () {
- deallog.depth_console (0);
- for (unsigned int order=0; order<5; ++order)
- {
- PoissonProblem<2> problem (order);
-
- unsigned int level=0;
- unsigned int n_dofs;
- do
- n_dofs = problem.run (level++);
- while (n_dofs<25000);
-
- string filename;
- switch (order)
- {
- case 0:
- filename = "criss_cross";
- break;
- case 1:
- filename = "linear";
- break;
- case 2:
- filename = "quadratic";
- break;
- case 3:
- filename = "cubic";
- break;
- case 4:
- filename = "quartic";
- break;
- };
- filename += ".history";
-
- cout << endl << "Printing convergence history to <"
- << filename << ">..." << endl;
- problem.print_history (filename);
- cout << endl << endl << endl;
- };
-
- return 0;
-};
+++ /dev/null
-set term postscript eps
-set xlabel "Number of degrees of freedom"
-set data style linespoints
-set logscale xy
-
-
-
-set ylabel "Error"
-
-set output "criss-cross.eps"
-
-plot "criss_cross.history" using 1:2 title "L1 error","criss_cross.history" using 1:3 title "L2 error","criss_cross.history" using 1:4 title "Linfty error","criss_cross.history" using 1:5 title "H1 seminorm error","criss_cross.history" using 1:6 title "H1 error"
-
-
-
-set output "linear.eps"
-
-plot "linear.history" using 1:2 title "L1 error","linear.history" using 1:3 title "L2 error","linear.history" using 1:4 title "Linfty error","linear.history" using 1:5 title "H1 seminorm error","linear.history" using 1:6 title "H1 error"
-
-
-
-set output "quadratic.eps"
-
-plot "quadratic.history" using 1:2 title "L1 error","quadratic.history" using 1:3 title "L2 error","quadratic.history" using 1:4 title "Linfty error","quadratic.history" using 1:5 title "H1 seminorm error","quadratic.history" using 1:6 title "H1 error"
-
-
-
-set output "cubic.eps"
-
-plot "cubic.history" using 1:2 title "L1 error","cubic.history" using 1:3 title "L2 error","cubic.history" using 1:4 title "Linfty error","cubic.history" using 1:5 title "H1 seminorm error","cubic.history" using 1:6 title "H1 error"
-
-
-
-set output "quartic.eps"
-
-plot "quartic.history" using 1:2 title "L1 error","quartic.history" using 1:3 title "L2 error","quartic.history" using 1:4 title "Linfty error","quartic.history" using 1:5 title "H1 seminorm error","quartic.history" using 1:6 title "H1 error"
-
-
-
-set output "l2error.eps"
-set ylabel "L2-error"
-
-plot "criss_cross.history" using 1:3 title "Criss-cross elements", "linear.history" using 1:3 title "Linear elements", "quadratic.history" using 1:3 title "Quadratic elements", "cubic.history" using 1:3 title "Cubic elements", "quartic.history" using 1:3 title "Quartic elements"
-
-
-
-set output "h1error.eps"
-set ylabel "H1-error"
-
-plot "criss_cross.history" using 1:6 title "Criss-cross elements", "linear.history" using 1:6 title "Linear elements", "quadratic.history" using 1:6 title "Quadratic elements", "cubic.history" using 1:6 title "Cubic elements", "quartic.history" using 1:6 title "Quartic elements"
-
-
+++ /dev/null
-dof_test
-Makefile.dep
-Makefile.dep
-*.go
-*.o
+++ /dev/null
-# $Id$
-# Copyright W. Bangerth, University of Heidelberg, 1998, 1999, 2000
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = dof_test
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../..
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g = $(lib-deal2-2d.g) \
- $(lib-deal2-3d.g) \
- $(lib-lac.g) \
- $(lib-base.g)
-libs.o = $(lib-deal2-2d.o) \
- $(lib-deal2-3d.o) \
- $(lib-lac.o) \
- $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
- libraries = $(target).go $(libs.g)
- flags = $(CXXFLAGS.g)
-else
- libraries = $(target).go $(libs.o)
- flags = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
- libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
- @echo ============================ Linking $@
- @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
- @echo ============================ Running $<
- ./$(target) 2 $(target).prm
- ./$(target) 3 $(target).prm
- gnuplot make_ps
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
- -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
- @echo ==============debug========= $(<F)
- @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
- @echo ==============optimized===== $(<F)
- @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-/h-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script. Since the
-# script prefixes the output names by `lib/o' or `lib/go' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
- $(shell echo $(include-path-base)/base/*.h \
- $(include-path-lac)/lac/*.h \
- $(include-path-deal2)/*/*.h)
- @echo ============================ Remaking Makefile
- @perl $D/common/scripts/make_dependencies.pl $(INCLUDE) $(target).cc \
- | perl -pi -e 's!lib/g?o/!!g;' \
- > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
+++ /dev/null
-/* $Id$ */
-/* Copyright W. Bangerth, University of Heidelberg, 1998 */
-
-
-
-#include <grid/grid_out.h>
-#include <dofs/dof_tools.h>
-#include <dofs/dof_handler.h>
-#include <grid/tria.h>
-#include <fe/fe_lib.lagrange.h>
-#include <grid/tria_boundary.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria_accessor.h>
-#include <grid/grid_generator.h>
-#include <lac/sparsity_pattern.h>
-#include <base/parameter_handler.h>
-#include <dofs/dof_constraints.h>
-#include <numerics/dof_renumbering.h>
-
-#include <fstream>
-#include <cmath>
-#include <cstdlib>
-
-
-
-// 1: continuous refinement of the unit square always in the middle
-// 2: refinement of the circle at the boundary
-// 2: refinement of a wiggled area at the boundary
-// 4: random refinement
-
-
-
-
-
-
-template <int dim>
-class Ball :
- public StraightBoundary<dim> {
- public:
- virtual Point<dim>
- get_new_point_on_line (const typename Triangulation<dim>::line_iterator &line) const {
- Point<dim> middle = StraightBoundary<dim>::get_new_point_on_line(line);
-
- for (int i=0; i<dim; ++i)
- middle(i) -= .5;
- middle *= sqrt(dim) / (sqrt(middle.square())*2);
- for (int i=0; i<dim; ++i)
- middle(i) += .5;
-
- return middle;
- };
-
-
- virtual Point<dim>
- get_new_point_on_quad (const typename Triangulation<dim>::quad_iterator &quad) const {
- Point<dim> middle = StraightBoundary<dim>::get_new_point_on_quad(quad);
-
- for (int i=0; i<dim; ++i)
- middle(i) -= .5;
- middle *= sqrt(dim) / (sqrt(middle.square())*2);
- for (int i=0; i<dim; ++i)
- middle(i) += .5;
-
- return middle;
- };
-};
-
-
-template <int dim>
-class CurvedLine :
- public StraightBoundary<dim> {
- public:
- virtual Point<dim>
- get_new_point_on_line (const typename Triangulation<dim>::line_iterator &line) const;
-
- virtual Point<dim>
- get_new_point_on_quad (const typename Triangulation<dim>::quad_iterator &quad) const;
-};
-
-
-
-template <int dim>
-Point<dim>
-CurvedLine<dim>::get_new_point_on_line (const typename Triangulation<dim>::line_iterator &line) const
-{
- Point<dim> middle = StraightBoundary<dim>::get_new_point_on_line (line);
-
- // if the line is at the top of bottom
- // face: do a special treatment on
- // this line. Note that if the
- // z-value of the midpoint is either
- // 0 or 1, then the z-values of all
- // vertices of the line is like that
- if (dim>=3)
- if (((middle(2) == 0) || (middle(2) == 1))
- // find out, if the line is in the
- // interior of the top or bottom face
- // of the domain, or at the edge.
- // lines at the edge need to undergo
- // the usual treatment, while for
- // interior lines taking the midpoint
- // is sufficient
- //
- // note: the trick with the boundary
- // id was invented after the above was
- // written, so we are not very strict
- // here with using these flags
- && (line->boundary_indicator() == 1))
- return middle;
-
-
- double x=middle(0),
- y=middle(1);
-
- if (y<x)
- if (y<1-x)
- middle(1) = 0.04*sin(6*3.141592*middle(0));
- else
- middle(0) = 1+0.04*sin(6*3.141592*middle(1));
-
- else
- if (y<1-x)
- middle(0) = 0.04*sin(6*3.141592*middle(1));
- else
- middle(1) = 1+0.04*sin(6*3.141592*middle(0));
-
- return middle;
-};
-
-
-
-template <int dim>
-Point<dim>
-CurvedLine<dim>::get_new_point_on_quad (const typename Triangulation<dim>::quad_iterator &quad) const
-{
- Point<dim> middle = StraightBoundary<dim>::get_new_point_on_quad (quad);
-
- // if the face is at the top of bottom
- // face: do not move the midpoint in
- // x/y direction. Note that if the
- // z-value of the midpoint is either
- // 0 or 1, then the z-values of all
- // vertices of the quad is like that
- if ((middle(2) == 0) || (middle(2) == 1))
- return middle;
-
- double x=middle(0),
- y=middle(1);
-
- if (y<x)
- if (y<1-x)
- middle(1) = 0.04*sin(6*3.141592*middle(0));
- else
- middle(0) = 1+0.04*sin(6*3.141592*middle(1));
-
- else
- if (y<1-x)
- middle(0) = 0.04*sin(6*3.141592*middle(1));
- else
- middle(1) = 1+0.04*sin(6*3.141592*middle(0));
-
- return middle;
-};
-
-
-
-
-template <int dim>
-class TestCases : public MultipleParameterLoop::UserClass{
- public:
- TestCases ();
- virtual ~TestCases ();
-
- virtual void create_new (const unsigned int run_no);
- virtual void declare_parameters (ParameterHandler &prm);
- virtual void run (ParameterHandler &prm);
-
- private:
- Triangulation<dim> *tria;
- DoFHandler<dim> *dof;
-};
-
-
-
-template <int dim>
-TestCases<dim>::TestCases () :
- tria(0), dof(0) {};
-
-
-template <int dim>
-TestCases<dim>::~TestCases ()
-{
- if (dof) delete dof;
- if (tria) delete tria;
-};
-
-
-
-template <int dim>
-void TestCases<dim>::create_new (const unsigned int) {
- if (dof != 0) delete dof;
- if (tria != 0) delete tria;
-
- tria = new Triangulation<dim>();
- GridGenerator::hyper_cube(*tria);
-
- dof = new DoFHandler<dim> (*tria);
-};
-
-
-
-template <int dim>
-void TestCases<dim>::declare_parameters (ParameterHandler &prm) {
- if (dim>=2)
- prm.declare_entry ("Test run", "zoom in",
- Patterns::Selection("zoom in|ball|curved line|random"));
- else
- prm.declare_entry ("Test run", "zoom in",
- Patterns::Selection("zoom in|random"));
- prm.declare_entry ("Grid file", "grid.1");
- prm.declare_entry ("Sparsity file", "sparsity.1");
- prm.declare_entry ("Condensed sparsity file", "sparsity.c.1");
-};
-
-
-
-template <int dim>
-void TestCases<dim>::run (ParameterHandler &prm) {
- cout << "Dimension = " << dim
- << ", Test case = " << prm.get ("Test run") << endl
- << endl;
-
- string test = prm.get ("Test run");
- unsigned int test_case = 1;
- if (test=="zoom in") test_case = 1;
- else
- if (test=="ball") test_case = 2;
- else
- if (test=="curved line") test_case = 3;
- else
- if (test=="random") test_case = 4;
- else
- cerr << "This test seems not to be implemented!" << endl;
-
-
- cout << " Making grid..." << endl;
- Boundary<dim> *boundary = 0;
-
- switch (test_case)
- {
- case 1:
- {
- // refine first cell
- tria->begin_active()->set_refine_flag();
- tria->execute_coarsening_and_refinement ();
- // refine first active cell
- // on coarsest level
- tria->begin_active()->set_refine_flag ();
- tria->execute_coarsening_and_refinement ();
-
- Triangulation<dim>::active_cell_iterator cell;
- for (int i=0; i<17; ++i)
- {
- // refine the presently
- // second last cell 17
- // times
- cell = tria->last_active(tria->n_levels()-1);
- --cell;
- cell->set_refine_flag ();
- tria->execute_coarsening_and_refinement ();
- };
-
- break;
- }
-
- case 2:
- case 3:
- {
- if (dim==3)
- {
- tria->begin_active()->face(2)->set_boundary_indicator(1);
- tria->begin_active()->face(4)->set_boundary_indicator(1);
- };
-
- // set the boundary function
- boundary = (test_case==2 ?
- static_cast<Boundary<dim>*>(new Ball<dim>()) :
- static_cast<Boundary<dim>*>(new CurvedLine<dim>()));
- tria->set_boundary (0, *boundary);
- tria->set_boundary (1, *boundary);
-
- // refine once
- tria->begin_active()->set_refine_flag();
- tria->execute_coarsening_and_refinement ();
-
- Triangulation<dim>::active_cell_iterator cell, endc;
- for (int i=0; i<6-dim; ++i)
- {
- cell = tria->begin_active();
- endc = tria->end();
-
- // refine all
- // boundary cells
- for (; cell!=endc; ++cell)
- if (cell->at_boundary())
- cell->set_refine_flag();
-
- tria->execute_coarsening_and_refinement();
- };
-
- break;
- }
-
- case 4:
- {
- // refine once
- tria->begin_active()->set_refine_flag();
- tria->execute_coarsening_and_refinement ();
-
- Triangulation<dim>::active_cell_iterator cell, endc;
- for (int i=0; i<(dim==2 ? 12 : (dim==3 ? 7 : 20)); ++i)
- {
- int n_levels = tria->n_levels();
- cell = tria->begin_active();
- endc = tria->end();
-
- for (; cell!=endc; ++cell)
- {
- double r = rand()*1.0/RAND_MAX,
- weight = 1.*
- (cell->level()*cell->level()) /
- (n_levels*n_levels);
-
- if (r <= 0.5*weight)
- cell->set_refine_flag ();
- };
-
- tria->execute_coarsening_and_refinement ();
- };
- break;
- }
- };
-
- // output the grid
- string file_prefix ("results/");
- file_prefix += ('0'+dim);
- file_prefix += "d.";
-
- cout << " Writing grid..." << endl;
- ofstream out((file_prefix + prm.get("Grid file")).c_str());
- GridOut().write_gnuplot (*tria, out);
-
-
-
-
- cout << " Distributing degrees of freedom..." << endl;
- FEQ1<dim> fe;
- dof->distribute_dofs (fe);
-
- cout << " Renumbering degrees of freedom..." << endl;
- DoFRenumbering::Cuthill_McKee (*dof);
-
- SparsityPattern sparsity (dof->n_dofs(),
- dof->max_couplings_between_dofs());
-
-
- DoFTools::make_sparsity_pattern (*dof, sparsity);
- int unconstrained_bandwidth = sparsity.bandwidth();
-
- cout << " Writing sparsity pattern..." << endl;
- ofstream sparsity_out ((file_prefix + prm.get("Sparsity file")).c_str());
- sparsity.print_gnuplot (sparsity_out);
-
-
-
- // computing constraints
- cout << " Computing constraints..." << endl;
- ConstraintMatrix constraints;
- DoFTools::make_hanging_node_constraints (*dof, constraints);
- constraints.close ();
- constraints.condense (sparsity);
-
- cout << " Writing condensed sparsity pattern..." << endl;
- ofstream c_sparsity_out ((file_prefix +
- prm.get("Condensed sparsity file")).c_str());
- sparsity.print_gnuplot (c_sparsity_out);
-
-
- cout << endl
- << " Total number of cells = " << tria->n_cells() << endl
- << " Total number of active cells = " << tria->n_active_cells() << endl
- << " Number of DoFs = " << dof->n_dofs() << endl
- << " Number of constraints = " << constraints.n_constraints() << endl
- << " Unconstrained matrix bandwidth= " << unconstrained_bandwidth << endl
- << " Constrained matrix bandwidth = " << sparsity.bandwidth()
- << endl << endl;
-
- // release the lock that dof has to the
- // finite element object
- dof->clear ();
- tria->set_boundary (0);
- tria->set_boundary (1);
- if (boundary)
- delete boundary;
-};
-
-
-
-int main (int argc, char **argv) {
- if (argc!=3)
- {
- cerr << "Usage: dof_test dimension parameterfile" << endl << endl;
- return 1;
- };
-
- unsigned int dim;
- if (argv[1][0] == '2')
- dim = 2;
- else
- dim = 3;
-
- switch (dim)
- {
- case 2:
- {
- TestCases<2> tests;
- MultipleParameterLoop input_data;
-
- tests.declare_parameters(input_data);
- input_data.read_input (argv[2]);
- input_data.loop (tests);
-
- break;
- };
-
- case 3:
- {
- TestCases<3> tests;
- MultipleParameterLoop input_data;
-
- tests.declare_parameters(input_data);
- input_data.read_input (argv[2]);
- input_data.loop (tests);
-
- break;
- };
- };
-
- return 0;
-};
-
+++ /dev/null
-set Test run = { zoom in | ball | curved line | random }
-set Grid file = {{ zoom_in | ball | curved_line | random }}.grid
-set Sparsity file = {{ zoom_in | ball | curved_line | random }}.sparsity
-set Condensed sparsity file = {{ zoom_in | ball | curved_line | random }}.sparsity.c
\ No newline at end of file
+++ /dev/null
-set size 0.721,1
-set data style lines
-set noxtics
-set noytics
-set noztics
-set noxzeroaxis
-set noyzeroaxis
-set nokey
-set term postscript eps
-
-!echo " Making <2d.zoom_in.grid.eps>"
-set output "results/2d.zoom_in.grid.eps"
-plot "results/2d.zoom_in.grid"
-
-!echo " Making <2d.ball.grid.eps>"
-set output "results/2d.ball.grid.eps"
-plot "results/2d.ball.grid"
-
-!echo " Making <2d.curved_line.grid.eps>"
-set output "results/2d.curved_line.grid.eps"
-plot "results/2d.curved_line.grid"
-
-!echo " Making <2d.random.grid.eps>"
-set output "results/2d.random.grid.eps"
-plot "results/2d.random.grid"
-
-
-
-
-!echo " Making <3d.zoom_in.grid.eps>"
-set output "results/3d.zoom_in.grid.eps"
-splot "results/3d.zoom_in.grid"
-
-!echo " Making <3d.ball.grid.eps>"
-set output "results/3d.ball.grid.eps"
-splot "results/3d.ball.grid"
-
-!echo " Making <3d.curved_line.grid.eps>"
-set output "results/3d.curved_line.grid.eps"
-splot "results/3d.curved_line.grid"
-
-!echo " Making <3d.random.grid.eps>"
-set output "results/3d.random.grid.eps"
-splot "results/3d.random.grid"
-
-
-
-
-set data style dots
-
-!echo " Making <2d.zoom_in.sparsity.eps>"
-set output "results/2d.zoom_in.sparsity.eps"
-plot "results/2d.zoom_in.sparsity"
-
-!echo " Making <2d.zoom_in.sparsity.c.eps>"
-set output "results/2d.zoom_in.sparsity.c.eps"
-plot "results/2d.zoom_in.sparsity.c"
-
-
-!echo " Making <2d.ball.sparsity.eps>"
-set output "results/2d.ball.sparsity.eps"
-plot "results/2d.ball.sparsity"
-
-!echo " Making <2d.ball.sparsity.c.eps>"
-set output "results/2d.ball.sparsity.c.eps"
-plot "results/2d.ball.sparsity.c"
-
-
-!echo " Making <2d.curved_line.sparsity.eps>"
-set output "results/2d.curved_line.sparsity.eps"
-plot "results/2d.curved_line.sparsity"
-
-!echo " Making <2d.curved_line.sparsity.c.eps>"
-set output "results/2d.curved_line.sparsity.c.eps"
-plot "results/2d.curved_line.sparsity.c"
-
-
-!echo " Making <2d.random.sparsity.eps>"
-set output "results/2d.random.sparsity.eps"
-plot "results/2d.random.sparsity"
-
-!echo " Making <2d.random.sparsity.c.eps>"
-set output "results/2d.random.sparsity.c.eps"
-plot "results/2d.random.sparsity.c"
-
-
-
-!echo " Making <3d.zoom_in.sparsity.eps>"
-set output "results/3d.zoom_in.sparsity.eps"
-plot "results/3d.zoom_in.sparsity"
-
-!echo " Making <3d.zoom_in.sparsity.c.eps>"
-set output "results/3d.zoom_in.sparsity.c.eps"
-plot "results/3d.zoom_in.sparsity.c"
-
-
-!echo " Making <3d.ball.sparsity.eps>"
-set output "results/3d.ball.sparsity.eps"
-plot "results/3d.ball.sparsity"
-
-!echo " Making <3d.ball.sparsity.c.eps>"
-set output "results/3d.ball.sparsity.c.eps"
-plot "results/3d.ball.sparsity.c"
-
-
-!echo " Making <3d.curved_line.sparsity.eps>"
-set output "results/3d.curved_line.sparsity.eps"
-plot "results/3d.curved_line.sparsity"
-
-!echo " Making <3d.curved_line.sparsity.c.eps>"
-set output "results/3d.curved_line.sparsity.c.eps"
-plot "results/3d.curved_line.sparsity.c"
-
-
-!echo " Making <3d.random.sparsity.eps>"
-set output "results/3d.random.sparsity.eps"
-plot "results/3d.random.sparsity"
-
-!echo " Making <3d.random.sparsity.c.eps>"
-set output "results/3d.random.sparsity.c.eps"
-plot "results/3d.random.sparsity.c"
-
+++ /dev/null
-error-estimation
-Makefile.dep
-*.go
-*.o
+++ /dev/null
-# $Id$
-# Copyright W. Bangerth, University of Heidelberg, 1998, 1999, 2000
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = error-estimation
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../..
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g = $(lib-deal2-2d.g) \
- $(lib-lac.g) \
- $(lib-base.g)
-libs.o = $(lib-deal2-2d.o) \
- $(lib-lac.o) \
- $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
- libraries = $(target).go $(libs.g)
- flags = $(CXXFLAGS.g)
-else
- libraries = $(target).go $(libs.o)
- flags = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
- libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
- @echo ============================ Linking $@
- @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
- @echo ============================ Running $<
- ./$(target) ee.gauss.prm
- ./$(target) ee.singular.prm
- ./$(target) ee.kink.prm
- gnuplot make_ps
-
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
- -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
- @echo ==============debug========= $(<F)
- @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
- @echo ==============optimized===== $(<F)
- @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-/h-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script. Since the
-# script prefixes the output names by `lib/o' or `lib/go' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
- $(shell echo $(include-path-base)/base/*.h \
- $(include-path-lac)/lac/*.h \
- $(include-path-deal2)/*/*.h)
- @echo ============================ Remaking Makefile
- @perl $D/common/scripts/make_dependencies.pl $(INCLUDE) $(target).cc \
- | perl -pi -e 's!lib/g?o/!!g;' \
- > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
+++ /dev/null
-set Test case = Gauss shape
-set Initial refinement = 2
-set Refinement criterion = { global | true error | estimated error }
-set Refinement fraction = 0.3
-set Coarsening fraction = 0.03
-set Maximum cells = 10000
-set Output base filename = data-gauss/
-set Output format = ucd
+++ /dev/null
-set Test case = Kink
-set Initial refinement = 1
-set Refinement criterion = { global | estimated error }
-set Refinement fraction = 0.1
-set Coarsening fraction = 0.02
-set Maximum cells = 100000
-set Output base filename = data-kink/
-set Output format = ucd
+++ /dev/null
-set Test case = Singular
-set Initial refinement = 1
-set Refinement criterion = { global | estimated error }
-set Refinement fraction = 0.1
-set Coarsening fraction = 0.02
-set Maximum cells = 100000
-set Output base filename = data-singular/
-set Output format = ucd
+++ /dev/null
-/* $Id$ */
-/* Copyright W. Bangerth, University of Heidelberg, 1998 */
-
-
-#include <base/function.h>
-#include <base/parameter_handler.h>
-#include <base/quadrature_lib.h>
-#include <grid/grid_generator.h>
-#include <grid/grid_out.h>
-#include <grid/tria.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_boundary_lib.h>
-#include <grid/tria_iterator.h>
-#include <dofs/dof_accessor.h>
-#include <dofs/dof_constraints.h>
-#include <dofs/dof_handler.h>
-#include <dofs/dof_tools.h>
-#include <fe/fe_lib.lagrange.h>
-#include <numerics/data_out.h>
-#include <numerics/base.h>
-#include <numerics/assembler.h>
-#include <numerics/vectors.h>
-#include <numerics/error_estimator.h>
-#include <numerics/solution_transfer.h>
-#include <lac/vector.h>
-
-#include <map>
-#include <fstream>
-#include <cmath>
-#include <string>
-#include <cstdlib>
-
-
-
-
-template <int dim>
-class PoissonEquation : public Equation<dim> {
- public:
- PoissonEquation (const Function<dim> &rhs) :
- Equation<dim>(1),
- use_coefficient(false),
- right_hand_side (rhs),
- coefficient (default_coefficient) {};
-
- PoissonEquation (const Function<dim> &rhs,
- const Function<dim> &coefficient ) :
- Equation<dim>(1),
- use_coefficient(true),
- right_hand_side (rhs),
- coefficient (coefficient) {};
-
- virtual void assemble (FullMatrix<double> &cell_matrix,
- Vector<double> &rhs,
- const FEValues<dim> &fe_values,
- const DoFHandler<dim>::cell_iterator &cell) const;
- virtual void assemble (FullMatrix<double> &cell_matrix,
- const FEValues<dim> &fe_values,
- const DoFHandler<dim>::cell_iterator &cell) const;
- virtual void assemble (Vector<double> &rhs,
- const FEValues<dim> &fe_values,
- const DoFHandler<dim>::cell_iterator &cell) const;
- protected:
- const bool use_coefficient;
- const Function<dim> &right_hand_side;
- const Function<dim> &coefficient;
-
- static const ConstantFunction<dim> default_coefficient;
-};
-
-
-const ConstantFunction<2> PoissonEquation<2>::default_coefficient(1);
-
-
-
-
-
-template <int dim>
-class PoissonProblem : public ProblemBase<dim>, public MultipleParameterLoop::UserClass {
- public:
- enum RefineMode {
- global, true_error, error_estimator
- };
-
- PoissonProblem ();
- ~PoissonProblem ();
-
- void clear ();
- void create_new (const unsigned int);
- void declare_parameters (ParameterHandler &prm);
- void run (ParameterHandler &prm);
- void print_history (const ParameterHandler &prm,
- const RefineMode refine_mode) const;
-
- protected:
- Triangulation<dim> *tria;
- DoFHandler<dim> *dof;
-
- Function<dim> *rhs;
- Function<dim> *solution_function;
- Function<dim> *coefficient;
-
- Boundary<dim> *boundary;
-
- vector<double> l2_error, linfty_error;
- vector<double> h1_error, estimated_error;
- vector<int> n_dofs;
-};
-
-
-
-
-
-template <int dim>
-class Solution {
- public:
-
- class GaussShape : public Function<dim> {
- public:
- virtual double value (const Point<dim> &p,
- const unsigned int component) const;
- virtual Tensor<1,dim> gradient (const Point<dim> &p,
- const unsigned int component) const;
- };
-
- class Singular : public Function<dim> {
- public:
- virtual double value (const Point<dim> &p,
- const unsigned int component) const;
- virtual Tensor<1,dim> gradient (const Point<dim> &p,
- const unsigned int component) const;
- };
-
- class Kink : public Function<dim> {
- public:
- class Coefficient : public Function<dim> {
- public:
- virtual double value (const Point<dim> &p,
- const unsigned int component) const;
- };
-
- virtual double value (const Point<dim> &p,
- const unsigned int component) const;
- virtual Tensor<1,dim> gradient (const Point<dim> &p,
- const unsigned int component) const;
- };
-};
-
-
-
-
-template <int dim>
-class RHS {
- public:
-
- /**
- * Right hand side constructed such that
- * the exact solution is
- * $x*y*exp(-(x**2+y**2)*40)$.
- */
- class GaussShape : public Function<dim> {
- public:
- virtual double value (const Point<dim> &p,
- const unsigned int component) const;
- };
-
- /**
- * Right hand side constructed such that
- * the exact solution is
- * $r^{2/3}$.
- */
- class Singular : public Function<dim> {
- public:
- virtual double value (const Point<dim> &p,
- const unsigned int component) const;
- };
-
- /**
- * Right hand side constructed such that
- * the exact solution is
- * $(1+4\theta(f))*f$ with
- * $f=y-x**2$.
- */
- class Kink : public Function<dim> {
- public:
- virtual double value (const Point<dim> &p,
- const unsigned int component) const;
- };
-};
-
-
-
-
-template <>
-double Solution<2>::GaussShape::value (const Point<2> &p,
- const unsigned int) const {
- return p(0)*p(1)*exp(-40*p.square());
-};
-
-
-template <>
-Tensor<1,2> Solution<2>::GaussShape::gradient (const Point<2> &p,
- const unsigned int) const {
- return Point<2> ((1-80.*p(0)*p(0))*p(1)*exp(-40*p.square()),
- (1-80.*p(1)*p(1))*p(0)*exp(-40*p.square()));
-};
-
-
-
-template <>
-double Solution<2>::Singular::value (const Point<2> &p,
- const unsigned int) const {
- return pow(p.square(), 1./3.);
-};
-
-
-template <>
-Tensor<1,2> Solution<2>::Singular::gradient (const Point<2> &p,
- const unsigned int) const {
- return 2./3.*pow(p.square(), -2./3.) * p;
-};
-
-
-
-
-inline double theta(const double x) {
- return (x>0 ? 1 : 0);
-};
-
-
-
-template <>
-double Solution<2>::Kink::value (const Point<2> &p,
- const unsigned int) const {
- const double s = p(1)-p(0)*p(0);
- return (1+4*theta(s))*s;
-};
-
-
-template <>
-Tensor<1,2> Solution<2>::Kink::gradient (const Point<2> &p,
- const unsigned int) const {
- const double s = p(1)-p(0)*p(0);
- return (1+4*theta(s))*Point<2>(-2*p(0),1);
-};
-
-
-template <>
-double Solution<2>::Kink::Coefficient::value (const Point<2> &p,
- const unsigned int) const {
- const double s = p(1)-p(0)*p(0);
- return 1./(1.+4.*theta(s));
-};
-
-
-
-template <>
-double RHS<2>::GaussShape::value (const Point<2> &p,
- const unsigned int) const {
- return (480.-6400.*p.square())*p(0)*p(1)*exp(-40.*p.square());
-};
-
-
-template <>
-double RHS<2>::Singular::value (const Point<2> &p,
- const unsigned int) const {
- return -4./9. * pow(p.square(), -2./3.);
-};
-
-
-template <>
-double RHS<2>::Kink::value (const Point<2> &,
- const unsigned int) const {
- return 2;
-};
-
-
-
-
-
-
-
-
-template <>
-void PoissonEquation<2>::assemble (FullMatrix<double> &cell_matrix,
- Vector<double> &rhs,
- const FEValues<2> &fe_values,
- const DoFHandler<2>::cell_iterator &) const {
- for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
- {
- const double c = (use_coefficient ?
- coefficient.value(fe_values.quadrature_point(point)) :
- 1);
- for (unsigned int i=0; i<fe_values.dofs_per_cell; ++i)
- {
- for (unsigned int j=0; j<fe_values.dofs_per_cell; ++j)
- cell_matrix(i,j) += (fe_values.shape_grad(i,point) *
- fe_values.shape_grad(j,point)) *
- fe_values.JxW(point) *
- c;
- rhs(i) += fe_values.shape_value(i,point) *
- right_hand_side.value(fe_values.quadrature_point(point)) *
- fe_values.JxW(point);
- };
- };
-};
-
-
-
-template <int dim>
-void PoissonEquation<dim>::assemble (FullMatrix<double> &,
- const FEValues<dim> &,
- const DoFHandler<dim>::cell_iterator &) const {
- Assert (false, ExcPureVirtualFunctionCalled());
-};
-
-
-
-template <int dim>
-void PoissonEquation<dim>::assemble (Vector<double> &,
- const FEValues<dim> &,
- const DoFHandler<dim>::cell_iterator &) const {
- Assert (false, ExcPureVirtualFunctionCalled());
-};
-
-
-
-
-
-
-
-
-
-template <int dim>
-PoissonProblem<dim>::PoissonProblem () :
- tria(0), dof(0), rhs(0),
- solution_function(0), coefficient(0),
- boundary(0) {};
-
-
-
-template <int dim>
-PoissonProblem<dim>::~PoissonProblem ()
-{
- clear ();
-};
-
-
-
-template <int dim>
-void PoissonProblem<dim>::clear () {
- if (dof != 0) { delete dof; dof = 0; };
- if (tria != 0) { delete tria; tria = 0; };
- if (rhs != 0) { delete rhs; rhs = 0; };
- if (solution_function != 0) { delete solution_function; solution_function = 0; };
- if (coefficient != 0) { delete coefficient; coefficient = 0; };
- if (boundary != 0) { delete boundary; boundary = 0; };
-
- // make it known to the underlying
- // ProblemBase that tria and dof
- // are already deleted
- set_tria_and_dof (tria, dof);
-
- l2_error.clear ();
- linfty_error.clear ();
- h1_error.clear ();
- estimated_error.clear();
- n_dofs.clear ();
-
- ProblemBase<dim>::clear ();
-};
-
-
-
-
-template <int dim>
-void PoissonProblem<dim>::create_new (const unsigned int) {
- clear ();
-
- tria = new Triangulation<dim>();
- dof = new DoFHandler<dim> (*tria);
- set_tria_and_dof (tria, dof);
- boundary = new HyperBallBoundary<dim> ();
-};
-
-
-
-template <int dim>
-void PoissonProblem<dim>::declare_parameters (ParameterHandler &prm) {
- prm.declare_entry ("Test case", "Gauss shape",
- Patterns::Selection("Gauss shape|Singular|Kink"));
- prm.declare_entry ("Initial refinement", "2",
- Patterns::Integer());
- prm.declare_entry ("Refinement criterion", "estimated error",
- Patterns::Selection("global|true error|estimated error"));
- prm.declare_entry ("Refinement fraction", "0.3",
- Patterns::Double());
- prm.declare_entry ("Coarsening fraction", "0.1",
- Patterns::Double());
- prm.declare_entry ("Maximum cells", "3000",
- Patterns::Integer());
- prm.declare_entry ("Output base filename", "");
- prm.declare_entry ("Output format", "ucd",
- Patterns::Selection("ucd|gnuplot"));
-};
-
-
-
-
-template <int dim>
-void PoissonProblem<dim>::run (ParameterHandler &prm) {
- cout << "======================================="
- << "=======================================" << endl
- << "===== Test case: " << prm.get ("Test case") << endl
- << "===== Doing computation with refinement criterion: ";
- RefineMode refine_mode;
- if (prm.get("Refinement criterion")=="global")
- refine_mode = global;
- else
- if (prm.get("Refinement criterion")=="true error")
- refine_mode = true_error;
- else
- if (prm.get("Refinement criterion")=="estimated error")
- refine_mode = error_estimator;
- else
- return;
-
- switch (refine_mode)
- {
- case global:
- cout << "global";
- break;
- case true_error:
- cout << "true error";
- break;
- case error_estimator:
- cout << "error estimator";
- break;
- };
-
- cout << endl
- << "======================================="
- << "=======================================" << endl;
- cout << "Making initial grid... " << endl;
- const unsigned int start_level(prm.get_integer("Initial refinement"));
- tria->set_boundary (0, *boundary);
- GridGenerator::hyper_ball (*tria);
- tria->refine_global (start_level);
-
- if (prm.get("Test case")=="Gauss shape")
- rhs = new RHS<dim>::GaussShape();
- else
- if (prm.get("Test case")=="Singular")
- rhs = new RHS<dim>::Singular();
- else
- if (prm.get("Test case")=="Kink")
- rhs = new RHS<dim>::Kink();
-
- if (prm.get("Test case")=="Gauss shape")
- solution_function = new Solution<dim>::GaussShape ();
- else
- if (prm.get("Test case")=="Singular")
- solution_function = new Solution<dim>::Singular ();
- else
- if (prm.get("Test case")=="Kink")
- solution_function = new Solution<dim>::Kink ();
-
-
- FEQ1<dim> fe;
- QGauss3<dim> quadrature;
- PoissonEquation<dim> *equation;
-
- static Solution<dim>::Kink::Coefficient kink_coefficient;
- if (prm.get("Test case")=="Kink")
- equation = new PoissonEquation<dim>(*rhs, kink_coefficient);
- else
- equation = new PoissonEquation<dim>(*rhs);
-
- SolutionTransfer<dim,double> solution_transfer (*dof_handler);
-
- unsigned int refine_step = 0;
- const unsigned int max_cells = prm.get_integer("Maximum cells");
- while (tria->n_active_cells() < max_cells)
- {
- Vector<double> old_solution = solution;
- cout << "Refinement step " << refine_step
- << ", using " << tria->n_active_cells() << " active cells on "
- << tria->n_levels() << " levels."
- << endl;
- cout << " Distributing dofs... ";
- dof->distribute_dofs (fe);
- cout << dof->n_dofs() << " degrees of freedom." << endl;
- n_dofs.push_back (dof->n_dofs());
-
- cout << " Assembling matrices..." << endl;
- UpdateFlags update_flags = UpdateFlags(update_values | update_q_points |
- update_gradients | update_JxW_values);
-
- ProblemBase<dim>::FunctionMap dirichlet_bc;
- dirichlet_bc[0] = solution_function;
- assemble (*equation, quadrature, update_flags, dirichlet_bc);
-
- // if we have an old solution lying
- // around, use it to preset the solution
- // vector. this reduced the quired
- // number of iterations by about
- // 10 per cent
- if (refine_step != 0)
- {
- solution.reinit (dof_handler->n_dofs());
- solution_transfer.interpolate (old_solution, solution);
-
- // if you don't want to preset
- // the solution vector,
- // uncomment the following
- // line and comment out the
- // preceding one
-// solution.reinit (dof_handler->n_dofs());
-
- solution_transfer.clear ();
- };
-
- cout << " Solving..." << endl;
-
- solve ();
-
-
- Vector<float> l2_error_per_cell, linfty_error_per_cell, h1_error_per_cell;
- Vector<float> estimated_error_per_cell;
- QGauss3<dim> q;
-
- cout << " Calculating L2 error... ";
- VectorTools::integrate_difference (*dof_handler,
- solution, *solution_function,
- l2_error_per_cell, q,
- L2_norm);
- cout << l2_error_per_cell.l2_norm() << endl;
- l2_error.push_back (l2_error_per_cell.l2_norm());
-
- cout << " Calculating L-infinity error... ";
- VectorTools::integrate_difference (*dof_handler,
- solution, *solution_function,
- linfty_error_per_cell, q,
- Linfty_norm);
- cout << linfty_error_per_cell.linfty_norm() << endl;
- linfty_error.push_back (linfty_error_per_cell.linfty_norm());
-
- cout << " Calculating H1 error... ";
- VectorTools::integrate_difference (*dof_handler,
- solution, *solution_function,
- h1_error_per_cell, q,
- H1_norm);
- cout << h1_error_per_cell.l2_norm() << endl;
- h1_error.push_back (h1_error_per_cell.l2_norm());
-
- cout << " Estimating H1 error... ";
-
- QSimpson<dim-1> eq;
- KellyErrorEstimator<dim>::estimate (*dof, eq,
- KellyErrorEstimator<dim>::FunctionMap(),
- solution,
- estimated_error_per_cell,
- vector<bool>(), // all components
- ((prm.get("Test case")=="Kink") ?
- &kink_coefficient : 0 ));
- cout << estimated_error_per_cell.l2_norm() << endl;
- estimated_error.push_back (estimated_error_per_cell.l2_norm());
-
- Vector<double> l2_error_per_dof(dof->n_dofs()), linfty_error_per_dof(dof->n_dofs());
- Vector<double> h1_error_per_dof(dof->n_dofs()), estimated_error_per_dof(dof->n_dofs());
- Vector<double> error_ratio (dof->n_dofs());
- DoFTools::distribute_cell_to_dof_vector (*dof, l2_error_per_cell, l2_error_per_dof);
- DoFTools::distribute_cell_to_dof_vector (*dof, linfty_error_per_cell,
- linfty_error_per_dof);
- DoFTools::distribute_cell_to_dof_vector (*dof, h1_error_per_cell, h1_error_per_dof);
- DoFTools::distribute_cell_to_dof_vector (*dof, estimated_error_per_cell,
- estimated_error_per_dof);
- error_ratio.ratio (h1_error_per_dof, estimated_error_per_dof);
-
- DataOut<dim> out;
- fill_data (out);
- out.add_data_vector (l2_error_per_dof, "L2_Error");
- out.add_data_vector (linfty_error_per_dof, "Linfty_Error");
- out.add_data_vector (h1_error_per_dof, "H1_Error");
- out.add_data_vector (estimated_error_per_dof, "Estimated_Error");
- out.add_data_vector (error_ratio, "Ratio_True_to_Estimated_Error");
- out.build_patches ();
- string filename = prm.get ("Output base filename");
- switch (refine_mode)
- {
- case global:
- filename += "global.";
- break;
- case true_error:
- filename += "true_error.";
- break;
- case error_estimator:
- filename += "estimated_error.";
- break;
- };
- filename += ('0'+(start_level+refine_step)/10);
- filename += ('0'+(start_level+refine_step)%10);
-
- if (prm.get("Output format")=="ucd")
- filename += ".inp";
- else
- if (prm.get("Output format")=="gnuplot")
- filename += ".gnuplot";
-
- cout << " Writing error plots to <" << filename << ">..." << endl;
- ofstream outfile(filename.c_str());
- if (prm.get("Output format")=="ucd")
- out.write_ucd (outfile);
- else
- if (prm.get("Output format")=="gnuplot")
- out.write_gnuplot (outfile);
-
- outfile.close();
-
- cout << " Refining triangulation...";
- switch (refine_mode)
- {
- case global:
- tria->set_all_refine_flags ();
- break;
- case true_error:
- tria->refine_and_coarsen_fixed_number (h1_error_per_cell,
- prm.get_double("Refinement fraction"),
- prm.get_double("Coarsening fraction"));
- break;
- case error_estimator:
- tria->refine_and_coarsen_fixed_number (estimated_error_per_cell,
- prm.get_double("Refinement fraction"),
- prm.get_double("Coarsening fraction"));
- break;
- };
-
- tria->prepare_coarsening_and_refinement ();
- solution_transfer.prepare_for_coarsening_and_refinement (solution);
- tria->execute_coarsening_and_refinement ();
-
- cout << endl << endl;
- ++refine_step;
- };
-
- string filename = prm.get ("Output base filename");
- switch (refine_mode)
- {
- case global:
- filename += "global.";
- break;
- case true_error:
- filename += "true_error.";
- break;
- case error_estimator:
- filename += "estimated_error.";
- break;
- };
-
- cout << endl;
-
- filename += "finest_mesh.gnuplot";
- cout << " Writing finest grid to <" << filename << ">... " << endl;
- ofstream finest_mesh (filename.c_str());
- GridOut().write_gnuplot (*tria, finest_mesh);
- finest_mesh.close();
-
- print_history (prm, refine_mode);
- cout << endl << endl << endl;
-
- dof->clear ();
- delete equation;
-};
-
-
-template <int dim>
-void PoissonProblem<dim>::print_history (const ParameterHandler &prm,
- const RefineMode refine_mode) const {
- string filename(prm.get("Output base filename"));
- filename += "history.";
- switch (refine_mode)
- {
- case global:
- filename += "global.";
- break;
- case true_error:
- filename += "true_error.";
- break;
- case error_estimator:
- filename += "estimated_error.";
- break;
- };
- filename += "gnuplot";
-
- cout << endl << "Printing convergence history to <" << filename << ">..."
- << endl;
- ofstream out(filename.c_str());
- out << "# n_dofs l2_error linfty_error "
- << "h1_error estimated_error"
- << endl;
- for (unsigned int i=0; i<n_dofs.size(); ++i)
- out << n_dofs[i]
- << " "
- << l2_error[i] << " "
- << linfty_error[i] << " "
- << h1_error[i] << " "
- << estimated_error[i] << " "
- << endl;
-
- double average_l2=0,
- average_linfty=0,
- average_h1=0,
- average_est=0;
-
- for (unsigned int i=1; i<n_dofs.size(); ++i)
- {
- average_l2 += l2_error[i]/l2_error[i-1];
- average_linfty += linfty_error[i]/linfty_error[i-1];
- average_h1 += h1_error[i]/h1_error[i-1];
- average_est += estimated_error[i]/estimated_error[i-1];
- };
-
- average_l2 /= (l2_error.size()-1);
- average_linfty /= (l2_error.size()-1);
- average_h1 /= (l2_error.size()-1);
- average_est /= (l2_error.size()-1);
-
- cout << "Average error reduction rates for h->h/2:" << endl;
- cout << " L2 error : " << 1./average_l2 << endl
- << " Linfty error : " << 1./average_linfty << endl
- << " H1 error : " << 1./average_h1 << endl
- << " Estimated error : " << 1./average_est << endl;
-};
-
-
-
-
-int main (int argc, char **argv) {
- if (argc!=2)
- {
- cout << "Usage: error-estimation parameterfile" << endl << endl;
- return 1;
- };
-
- PoissonProblem<2> poisson;
- MultipleParameterLoop input_data;
-
- poisson.declare_parameters(input_data);
- input_data.read_input (argv[1]);
- input_data.loop (poisson);
-
- return 0;
-};
-
-
-
+++ /dev/null
-set xlabel "Number of degrees of freedom"
-set ylabel "Error"
-set data style linespoints
-set logscale xy
-
-set term postscript eps
-
-
-set output "data-gauss/history.global.eps"
-
-plot "data-gauss/history.global.gnuplot" using 1:2 title "L2 error","data-gauss/history.global.gnuplot" using 1:3 title "Linfty error","data-gauss/history.global.gnuplot" using 1:4 title "H1 error","data-gauss/history.global.gnuplot" using 1:5 title "Estimated H1 error"
-
-
-set output "data-gauss/history.true_error.eps"
-
-plot "data-gauss/history.true_error.gnuplot" using 1:2 title "L2 error","data-gauss/history.true_error.gnuplot" using 1:3 title "Linfty error","data-gauss/history.true_error.gnuplot" using 1:4 title "H1 error","data-gauss/history.true_error.gnuplot" using 1:5 title "Estimated H1 error"
-
-
-set output "data-gauss/history.estimated_error.eps"
-
-plot "data-gauss/history.estimated_error.gnuplot" using 1:2 title "L2 error","data-gauss/history.estimated_error.gnuplot" using 1:3 title "Linfty error","data-gauss/history.estimated_error.gnuplot" using 1:4 title "H1 error","data-gauss/history.estimated_error.gnuplot" using 1:5 title "Estimated H1 error"
-
-
-set output "data-gauss/history.compare.eps"
-plot "data-gauss/history.global.gnuplot" using 1:2 title "global refinement -- L2 error", "data-gauss/history.true_error.gnuplot" using 1:2 title "ref. by true error -- L2 error", "data-gauss/history.estimated_error.gnuplot" using 1:2 title "ref. by estimated error -- L2 error", 0.1/sqrt(x) title "O(h)", "data-gauss/history.global.gnuplot" using 1:4 title "global refinement -- H1 error", "data-gauss/history.true_error.gnuplot" using 1:4 title "ref. by true error -- H1 error", "data-gauss/history.estimated_error.gnuplot" using 1:4 title "ref. by estimated error -- H1 error", 0.04/x title "O(h^2)"
-
-
-
-
-
-set output "data-singular/history.global.eps"
-
-plot "data-singular/history.global.gnuplot" using 1:2 title "L2 error","data-singular/history.global.gnuplot" using 1:3 title "Linfty error","data-singular/history.global.gnuplot" using 1:4 title "H1 error","data-singular/history.global.gnuplot" using 1:5 title "Estimated H1 error"
-
-
-set output "data-singular/history.estimated_error.eps"
-
-plot "data-singular/history.estimated_error.gnuplot" using 1:2 title "L2 error","data-singular/history.estimated_error.gnuplot" using 1:3 title "Linfty error","data-singular/history.estimated_error.gnuplot" using 1:4 title "H1 error","data-singular/history.estimated_error.gnuplot" using 1:5 title "Estimated H1 error"
-
-
-set output "data-singular/history.compare.eps"
-plot "data-singular/history.global.gnuplot" using 1:2 title "global refinement -- L2 error", "data-singular/history.estimated_error.gnuplot" using 1:2 title "ref. by estimated error -- L2 error", 1.1/x**0.33 title "O(h^2/3)", 2./sqrt(x) title "O(h)", "data-singular/history.global.gnuplot" using 1:4 title "global refinement -- H1 error", "data-singular/history.estimated_error.gnuplot" using 1:4 title "ref. by estimated error -- H1 error", 0.2/x**0.4 title "O(h^0.8)", 4./x title "O(h^2)"
-
-
-
-
-
-
-
-set output "data-kink/history.global.eps"
-
-plot "data-kink/history.global.gnuplot" using 1:2 title "L2 error","data-kink/history.global.gnuplot" using 1:3 title "Linfty error","data-kink/history.global.gnuplot" using 1:4 title "H1 error","data-kink/history.global.gnuplot" using 1:5 title "Estimated H1 error"
-
-
-set output "data-kink/history.estimated_error.eps"
-
-plot "data-kink/history.estimated_error.gnuplot" using 1:2 title "L2 error","data-kink/history.estimated_error.gnuplot" using 1:3 title "Linfty error","data-kink/history.estimated_error.gnuplot" using 1:4 title "H1 error","data-kink/history.estimated_error.gnuplot" using 1:5 title "Estimated H1 error"
-
-
-set output "data-kink/history.compare.eps"
-plot "data-kink/history.global.gnuplot" using 1:2 title "global refinement -- L2 error", "data-kink/history.estimated_error.gnuplot" using 1:2 title "ref. by estimated error -- L2 error", 5/x**0.25 title "O(h^1/2)", 20/x**0.5 title "O(h)", "data-kink/history.global.gnuplot" using 1:4 title "global refinement -- H1 error", "data-kink/history.estimated_error.gnuplot" using 1:4 title "ref. by estimated error -- H1 error", 1.5/sqrt(x) title "O(h)", 20/x**0.95 title "O(h^1.8)"
-
-
-
-
-set parametric
-set data style lines
-set nologscale xy
-set size 0.7,1
-
-set output "data-gauss/finest_mesh.global.eps"
-plot "data-gauss/global.finest_mesh.gnuplot" title "Finest mesh"
-
-set output "data-gauss/finest_mesh.true_error.eps"
-plot "data-gauss/true_error.finest_mesh.gnuplot" title "Finest mesh"
-
-set output "data-gauss/finest_mesh.estimated_error.eps"
-plot "data-gauss/estimated_error.finest_mesh.gnuplot" title "Finest mesh"
-
-
-
-set output "data-singular/finest_mesh.global.eps"
-plot "data-singular/global.finest_mesh.gnuplot" title "Finest mesh"
-
-set output "data-singular/finest_mesh.estimated_error.eps"
-plot "data-singular/estimated_error.finest_mesh.gnuplot" title "Finest mesh"
-
-
-
-set output "data-kink/finest_mesh.global.eps"
-plot "data-kink/global.finest_mesh.gnuplot" title "Finest mesh"
-
-set output "data-kink/finest_mesh.estimated_error.eps"
-plot "data-kink/estimated_error.finest_mesh.gnuplot" title "Finest mesh"
+++ /dev/null
-perl -pi -e 's/^#.*$\\n//g' data-*/*.inp
+++ /dev/null
-grid_test
-Makefile.dep
-*.go
-*.o
+++ /dev/null
-# $Id$
-# Copyright W. Bangerth, University of Heidelberg, 1998, 1999, 2000
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = grid_test
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../..
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g = $(lib-deal2-2d.g) \
- $(lib-deal2-3d.g) \
- $(lib-lac.g) \
- $(lib-base.g)
-libs.o = $(lib-deal2-2d.o) \
- $(lib-deal2-3d.o) \
- $(lib-lac.o) \
- $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
- libraries = $(target).go $(libs.g)
- flags = $(CXXFLAGS.g)
-else
- libraries = $(target).go $(libs.o)
- flags = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
- libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
- @echo ============================ Linking $@
- @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
- @echo ============================ Running $<
- ./$(target) 2 1
- ./$(target) 2 2
- ./$(target) 2 3
- ./$(target) 2 4
- ./$(target) 3 1
- ./$(target) 3 2
- ./$(target) 3 3
- ./$(target) 3 4
-
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
- -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
- @echo ==============debug========= $(<F)
- @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
- @echo ==============optimized===== $(<F)
- @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-/h-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script. Since the
-# script prefixes the output names by `lib/o' or `lib/go' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
- $(shell echo $(include-path-base)/base/*.h \
- $(include-path-lac)/lac/*.h \
- $(include-path-deal2)/*/*.h)
- @echo ============================ Remaking Makefile
- @perl $D/common/scripts/make_dependencies.pl $(INCLUDE) $(target).cc \
- | perl -pi -e 's!lib/g?o/!!g;' \
- > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
+++ /dev/null
-/* $Id$ */
-/* Copyright W. Bangerth, University of Heidelberg, 1998 */
-
-
-#include <grid/tria_boundary.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria.h>
-#include <grid/grid_generator.h>
-#include <grid/grid_out.h>
-#include <fstream>
-#include <string>
-#include <cmath>
-#include <cstdlib>
-
-
-
-// 1: continuous refinement of the unit square always in the middle
-// 2: refinement of the circle at the boundary
-// 2: refinement of a wiggled area at the boundary
-// 4: random refinement
-
-
-
-
-
-template <int dim>
-class Ball :
- public StraightBoundary<dim> {
- public:
- virtual Point<dim>
- get_new_point_on_line (const typename Triangulation<dim>::line_iterator &line) const {
- Point<dim> middle = StraightBoundary<dim>::get_new_point_on_line(line);
-
- for (int i=0; i<dim; ++i)
- middle(i) -= .5;
- middle *= sqrt(dim) / (sqrt(middle.square())*2);
- for (int i=0; i<dim; ++i)
- middle(i) += .5;
-
- return middle;
- };
-
-
- virtual Point<dim>
- get_new_point_on_quad (const typename Triangulation<dim>::quad_iterator &quad) const {
- Point<dim> middle = StraightBoundary<dim>::get_new_point_on_quad(quad);
-
- for (int i=0; i<dim; ++i)
- middle(i) -= .5;
- middle *= sqrt(dim) / (sqrt(middle.square())*2);
- for (int i=0; i<dim; ++i)
- middle(i) += .5;
-
- return middle;
- };
-};
-
-
-template <int dim>
-class CurvedLine :
- public StraightBoundary<dim> {
- public:
- virtual Point<dim>
- get_new_point_on_line (const typename Triangulation<dim>::line_iterator &line) const;
-
- virtual Point<dim>
- get_new_point_on_quad (const typename Triangulation<dim>::quad_iterator &quad) const;
-};
-
-
-
-template <int dim>
-Point<dim>
-CurvedLine<dim>::get_new_point_on_line (const typename Triangulation<dim>::line_iterator &line) const
-{
- Point<dim> middle = StraightBoundary<dim>::get_new_point_on_line (line);
-
- // if the line is at the top of bottom
- // face: do a special treatment on
- // this line. Note that if the
- // z-value of the midpoint is either
- // 0 or 1, then the z-values of all
- // vertices of the line is like that
- if (dim>=3)
- if (((middle(2) == 0) || (middle(2) == 1))
- // find out, if the line is in the
- // interior of the top or bottom face
- // of the domain, or at the edge.
- // lines at the edge need to undergo
- // the usual treatment, while for
- // interior lines taking the midpoint
- // is sufficient
- //
- // note: the trick with the boundary
- // id was invented after the above was
- // written, so we are not very strict
- // here with using these flags
- && (line->boundary_indicator() == 1))
- return middle;
-
-
- double x=middle(0),
- y=middle(1);
-
- if (y<x)
- if (y<1-x)
- middle(1) = 0.04*sin(6*3.141592*middle(0));
- else
- middle(0) = 1+0.04*sin(6*3.141592*middle(1));
-
- else
- if (y<1-x)
- middle(0) = 0.04*sin(6*3.141592*middle(1));
- else
- middle(1) = 1+0.04*sin(6*3.141592*middle(0));
-
- return middle;
-};
-
-
-
-template <int dim>
-Point<dim>
-CurvedLine<dim>::get_new_point_on_quad (const typename Triangulation<dim>::quad_iterator &quad) const
-{
- Point<dim> middle = StraightBoundary<dim>::get_new_point_on_quad (quad);
-
- // if the face is at the top of bottom
- // face: do not move the midpoint in
- // x/y direction. Note that if the
- // z-value of the midpoint is either
- // 0 or 1, then the z-values of all
- // vertices of the quad is like that
- if ((middle(2) == 0) || (middle(2) == 1))
- return middle;
-
- double x=middle(0),
- y=middle(1);
-
- if (y<x)
- if (y<1-x)
- middle(1) = 0.04*sin(6*3.141592*middle(0));
- else
- middle(0) = 1+0.04*sin(6*3.141592*middle(1));
-
- else
- if (y<1-x)
- middle(0) = 0.04*sin(6*3.141592*middle(1));
- else
- middle(1) = 1+0.04*sin(6*3.141592*middle(0));
-
- return middle;
-};
-
-
-
-template <int dim>
-void test (const int test_case) {
- cout << "Running testcase " << test_case
- << " in " << dim << " dimensions." << endl;
- Triangulation<dim> tria;
- GridGenerator::hyper_cube(tria);
-
- if ((dim==1) && ((test_case==2) || (test_case==3)))
- {
- cout << "Impossible for this dimension." << endl;
- return;
- };
-
-
- switch (test_case)
- {
- case 1:
- {
- // we want to log the
- // refinement history
-// ofstream history ("mesh.history");
-
- // refine first cell
- tria.begin_active()->set_refine_flag();
-// tria.save_refine_flags (history);
- tria.execute_coarsening_and_refinement ();
-
- // refine first active cell
- // on coarsest level
- tria.begin_active()->set_refine_flag ();
-// tria.save_refine_flags (history);
- tria.execute_coarsening_and_refinement ();
-
- Triangulation<dim>::active_cell_iterator cell;
- for (int i=0; i<17; ++i)
- {
- // refine the presently
- // second last cell 17
- // times
- cell = tria.last_active(tria.n_levels()-1);
- --cell;
- cell->set_refine_flag ();
-// tria.save_refine_flags (history);
- tria.execute_coarsening_and_refinement ();
- };
-
-// tria.refine_global (5);
-
- break;
- }
-
- case 2:
- case 3:
- {
- if (dim==3)
- {
- tria.begin_active()->face(2)->set_boundary_indicator(1);
- tria.begin_active()->face(4)->set_boundary_indicator(1);
- };
-
-
- // set the boundary function
- Ball<dim> ball;
- CurvedLine<dim> curved_line;
- if (test_case==2)
- {
- tria.set_boundary (0, ball);
- tria.set_boundary (1, ball);
- } else {
- tria.set_boundary (0, curved_line);
- tria.set_boundary (1, curved_line);
- };
-
- // refine once
- tria.begin_active()->set_refine_flag();
- tria.execute_coarsening_and_refinement ();
-
- Triangulation<dim>::active_cell_iterator cell, endc;
- const unsigned int steps[4] = { 0, 10, 7, 2 };
- for (unsigned int i=0; i<steps[dim]; ++i)
- {
- cell = tria.begin_active();
- endc = tria.end();
-
- // refine all
- // boundary cells
- for (; cell!=endc; ++cell)
- if (cell->at_boundary())
- cell->set_refine_flag();
-
- tria.execute_coarsening_and_refinement();
- };
-
- tria.set_boundary (0);
- tria.set_boundary (1);
-
- break;
- }
-
- case 4:
- {
- // refine once
- tria.begin_active()->set_refine_flag();
- tria.execute_coarsening_and_refinement ();
-
- Triangulation<dim>::active_cell_iterator cell, endc;
- for (int i=0; i<(dim==2 ? 13 : (dim==3 ? 7 : 30)); ++i)
- {
- int n_levels = tria.n_levels();
- cell = tria.begin_active();
- endc = tria.end();
-
- for (; cell!=endc; ++cell)
- {
- double r = rand()*1.0/RAND_MAX,
- weight = 1.*
- (cell->level()*cell->level()) /
- (n_levels*n_levels);
-
- if (r <= 0.5*weight)
- cell->set_refine_flag ();
- };
-
- tria.execute_coarsening_and_refinement ();
- };
- break;
- }
- };
-
-
-
- // output the grid
- string filename("results/");
- filename += ('0'+dim);
- filename += "d.";
- filename += ('0'+test_case);
- filename += ".eps";
-
- ofstream out(filename.c_str());
- GridOut grid_out;
- GridOut::EpsFlags<3> eps_flags;
- eps_flags.azimut_angle += 20;
- eps_flags.turn_angle += 20;
- grid_out.set_flags (eps_flags);
- grid_out.write_eps (tria, out);
-
- cout << " Total number of cells = " << tria.n_cells() << endl
- << " Total number of active cells = " << tria.n_active_cells() << endl;
-};
-
-
-
-int main (int argc, char **argv) {
- if (argc!=3)
- {
- cout << "Usage: grid_test dimension testcase" << endl << endl
- << "Dimension: 2 or 3" << endl << endl
- << "Testcases:" << endl
- << " 1: continuous refinement of the unit square/cube always in the middle" << endl
- << " 2: refinement of the circle/sphere at the boundary" << endl
- << " 3: refinement of a wiggled area at the boundary" << endl
- << " 4: random refinement" << endl << endl;
- return 1;
- };
-
- if (argv[1][0] == '2')
- test<2> (argv[2][0]-'0');
- else
- test<3> (argv[2][0]-'0');
-
- return 0;
-};
+++ /dev/null
-set size 0.721,1
-set data style lines
-set noxtics
-set noytics
-set noztics
-set noxzeroaxis
-set noyzeroaxis
-#set nozzeroaxis
-set nokey
-set term postscript eps
-
-!echo " Making <results/2d.1.eps>"
-set output "results/2d.1.eps"
-plot "results/2d.1"
-
-!echo " Making <results/2d.2.eps>"
-set output "results/2d.2.eps"
-plot "results/2d.2"
-
-!echo " Making <results/2d.3.eps>"
-set output "results/2d.3.eps"
-plot "results/2d.3"
-
-!echo " Making <results/2d.4.eps>"
-set output "results/2d.4.eps"
-plot "results/2d.4"
-
-
-!echo " Making <results/3d.1.eps>"
-set output "results/3d.1.eps"
-splot "results/3d.1"
-
-!echo " Making <results/3d.2.eps>"
-set output "results/3d.2.eps"
-splot "results/3d.2"
-
-!echo " Making <results/3d.3.eps>"
-set output "results/3d.3.eps"
-splot "results/3d.3"
-
-!echo " Making <results/3d.4.eps>"
-set output "results/3d.4.eps"
-splot "results/3d.4"
+++ /dev/null
-multigrid
-Makefile.dep
-*.go
-*.o
+++ /dev/null
-# $Id$
-# Copyright W. Bangerth, University of Heidelberg, 1998, 1999, 2000
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = multigrid
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../..
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g = $(lib-deal2-2d.g) \
- $(lib-lac.g) \
- $(lib-base.g)
-libs.o = $(lib-deal2-2d.o) \
- $(lib-lac.o) \
- $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
- libraries = $(target).go $(libs.g)
- flags = $(CXXFLAGS.g)
-else
- libraries = $(target).go $(libs.o)
- flags = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
- libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
- @echo ============================ Linking $@
- @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
- @echo ============================ Running $<
- @./$(target)
- gnuplot make_ps
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
- -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
- @echo ==============debug========= $(<F)
- @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
- @echo ==============optimized===== $(<F)
- @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-/h-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script. Since the
-# script prefixes the output names by `lib/o' or `lib/go' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
- $(shell echo $(include-path-base)/base/*.h \
- $(include-path-lac)/lac/*.h \
- $(include-path-deal2)/*/*.h)
- @echo ============================ Remaking Makefile
- @perl $D/common/scripts/make_dependencies.pl $(INCLUDE) $(target).cc \
- | perl -pi -e 's!lib/g?o/!!g;' \
- > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
+++ /dev/null
-set term postscript eps
-set xlabel "Number of degrees of freedom"
-set data style linespoints
-set logscale xy
-
-
-
-set ylabel "Error"
-
-set output "criss-cross.eps"
-
-plot "criss_cross.history" using 1:2 title "L1 error","criss_cross.history" using 1:3 title "L2 error","criss_cross.history" using 1:4 title "Linfty error","criss_cross.history" using 1:5 title "H1 seminorm error","criss_cross.history" using 1:6 title "H1 error"
-
-
-
-set output "linear.eps"
-
-plot "linear.history" using 1:2 title "L1 error","linear.history" using 1:3 title "L2 error","linear.history" using 1:4 title "Linfty error","linear.history" using 1:5 title "H1 seminorm error","linear.history" using 1:6 title "H1 error"
-
-
-
-set output "quadratic.eps"
-
-plot "quadratic.history" using 1:2 title "L1 error","quadratic.history" using 1:3 title "L2 error","quadratic.history" using 1:4 title "Linfty error","quadratic.history" using 1:5 title "H1 seminorm error","quadratic.history" using 1:6 title "H1 error"
-
-
-
-set output "cubic.eps"
-
-plot "cubic.history" using 1:2 title "L1 error","cubic.history" using 1:3 title "L2 error","cubic.history" using 1:4 title "Linfty error","cubic.history" using 1:5 title "H1 seminorm error","cubic.history" using 1:6 title "H1 error"
-
-
-
-set output "quartic.eps"
-
-plot "quartic.history" using 1:2 title "L1 error","quartic.history" using 1:3 title "L2 error","quartic.history" using 1:4 title "Linfty error","quartic.history" using 1:5 title "H1 seminorm error","quartic.history" using 1:6 title "H1 error"
-
-
-
-set output "l2error.eps"
-set ylabel "L2-error"
-
-plot "criss_cross.history" using 1:3 title "Criss-cross elements", "linear.history" using 1:3 title "Linear elements", "quadratic.history" using 1:3 title "Quadratic elements", "cubic.history" using 1:3 title "Cubic elements", "quartic.history" using 1:3 title "Quartic elements"
-
-
-
-set output "h1error.eps"
-set ylabel "H1-error"
-
-plot "criss_cross.history" using 1:6 title "Criss-cross elements", "linear.history" using 1:6 title "Linear elements", "quadratic.history" using 1:6 title "Quadratic elements", "cubic.history" using 1:6 title "Cubic elements", "quartic.history" using 1:6 title "Quartic elements"
-
-
+++ /dev/null
-/* $Id$ */
-/* Copyright W. Bangerth, University of Heidelberg, 1998 */
-
-
-
-#include <base/quadrature_lib.h>
-#include <base/function.h>
-#include <base/logstream.h>
-#include <lac/vector.h>
-#include <lac/full_matrix.h>
-#include <lac/sparse_matrix.h>
-#include <lac/solver_cg.h>
-#include <lac/vector_memory.h>
-#include <lac/precondition.h>
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
-#include <grid/grid_generator.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria_boundary_lib.h>
-#include <dofs/dof_accessor.h>
-#include <dofs/dof_tools.h>
-#include <fe/fe_values.h>
-#include <numerics/vectors.h>
-#include <numerics/matrices.h>
-#include <numerics/data_out.h>
-#include <fe/fe_lib.lagrange.h>
-#include <grid/grid_out.h>
-#include <dofs/dof_constraints.h>
-#include <numerics/error_estimator.h>
-
-#include <multigrid/mg_dof_handler.h>
-#include <multigrid/mg_dof_accessor.h>
-#include <multigrid/mg_dof_tools.h>
-#include <multigrid/mg_base.h>
-#include <multigrid/mg_smoother.h>
-#include <multigrid/multigrid.h>
-
-#include <lac/solver_richardson.h>
-
-#include <fstream>
-
-
-
-template <int dim>
-class LaplaceProblem
-{
- public:
- LaplaceProblem ();
- ~LaplaceProblem ();
- void run ();
-
- private:
- void setup_system ();
- void assemble_system ();
- void solve ();
- void refine_grid ();
- void output_results (const unsigned int cycle) const;
-
- Triangulation<dim> triangulation;
- MGDoFHandler<dim> mg_dof_handler;
-
- FEQ1<dim> fe;
-
- ConstraintMatrix hanging_node_constraints;
-
- SparsityPattern global_sparsity_pattern;
- SparseMatrix<double> global_system_matrix;
-
- MGLevelObject<SparsityPattern> level_sparsity_patterns;
- MGLevelObject<SparseMatrix<double> > level_system_matrices;
-
- Vector<double> solution;
- Vector<double> system_rhs;
-};
-
-
-
-template <int dim>
-class Coefficient : public Function<dim>
-{
- public:
- virtual double value (const Point<dim> &p,
- const unsigned int component = 0) const;
-
- virtual void value_list (const vector<Point<dim> > &points,
- vector<double> &values,
- const unsigned int component = 0) const;
-};
-
-
-
-template <int dim>
-double Coefficient<dim>::value (const Point<dim> &p,
- const unsigned int) const
-{
- if (p.square() < 0.5*0.5)
- return 20;
- else
- return 1;
-};
-
-
-
-template <int dim>
-void Coefficient<dim>::value_list (const vector<Point<dim> > &points,
- vector<double> &values,
- const unsigned int component) const
-{
- const unsigned int n_points = points.size();
-
- Assert (values.size() == n_points,
- ExcVectorHasWrongSize (values.size(), n_points));
-
- Assert (component == 0,
- ExcWrongComponent (component, 1));
-
- for (unsigned int i=0; i<n_points; ++i)
- {
- if (points[i].square() < 0.5*0.5)
- values[i] = 20;
- else
- values[i] = 1;
- };
-};
-
-
-
-
-class MGSmootherLAC : public MGSmootherBase
-{
- private:
- SmartPointer<MGLevelObject<SparseMatrix<double> > >matrices;
- public:
- MGSmootherLAC(MGLevelObject<SparseMatrix<double> >&);
-
- virtual void smooth (const unsigned int level,
- Vector<double> &u,
- const Vector<double> &rhs) const;
-};
-
-
-MGSmootherLAC::MGSmootherLAC(MGLevelObject<SparseMatrix<double> >& matrix)
- :
- matrices(&matrix)
-{}
-
-
-void
-MGSmootherLAC::smooth (const unsigned int level,
- Vector<double> &u,
- const Vector<double> &rhs) const
-{
- SolverControl control(2,1.e-300,false,false);
- PrimitiveVectorMemory<> mem;
- SolverRichardson<> rich(control, mem);
- PreconditionRelaxation<>
- prec((*matrices)[level], &SparseMatrix<double> ::template precondition_SSOR<double>, 1.);
-
- rich.solve((*matrices)[level], u, rhs, prec);
-}
-
-
-
-template <int dim>
-LaplaceProblem<dim>::LaplaceProblem () :
- mg_dof_handler (triangulation)
-{};
-
-
-
-template <int dim>
-LaplaceProblem<dim>::~LaplaceProblem ()
-{
- mg_dof_handler.clear ();
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::setup_system ()
-{
- mg_dof_handler.distribute_dofs (fe);
-
- hanging_node_constraints.clear ();
- DoFTools::make_hanging_node_constraints (mg_dof_handler,
- hanging_node_constraints);
- hanging_node_constraints.close ();
- global_sparsity_pattern.reinit (mg_dof_handler.DoFHandler<dim>::n_dofs(),
- mg_dof_handler.DoFHandler<dim>::n_dofs(),
- mg_dof_handler.max_couplings_between_dofs());
- DoFTools::make_sparsity_pattern (mg_dof_handler, global_sparsity_pattern);
- hanging_node_constraints.condense (global_sparsity_pattern);
- global_sparsity_pattern.compress();
-
- global_system_matrix.reinit (global_sparsity_pattern);
-
- solution.reinit (mg_dof_handler.DoFHandler<dim>::n_dofs());
- system_rhs.reinit (mg_dof_handler.DoFHandler<dim>::n_dofs());
-
-
- const unsigned int n_levels = triangulation.n_levels();
- level_system_matrices.resize (0, n_levels);
- level_sparsity_patterns.resize (0, n_levels);
-
- for (unsigned int level=0; level<n_levels; ++level)
- {
- level_sparsity_patterns[level].reinit (mg_dof_handler.n_dofs(level),
- mg_dof_handler.n_dofs(level),
- mg_dof_handler.max_couplings_between_dofs()); //xxx
- MGDoFTools::make_sparsity_pattern (mg_dof_handler,
- level_sparsity_patterns[level],
- level);
- level_sparsity_patterns[level].compress();
-
- level_system_matrices[level].reinit (level_sparsity_patterns[level]);
- };
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::assemble_system ()
-{
- const Coefficient<dim> coefficient;
-
- QGauss2<dim> quadrature_formula;
-
- FEValues<dim> fe_values (fe, quadrature_formula,
- UpdateFlags(update_values |
- update_gradients |
- update_q_points |
- update_JxW_values));
-
- const unsigned int dofs_per_cell = fe.dofs_per_cell;
- const unsigned int n_q_points = quadrature_formula.n_quadrature_points;
-
- FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);
- Vector<double> cell_rhs (dofs_per_cell);
-
- vector<unsigned int> local_dof_indices (dofs_per_cell);
-
- // FIX
- vector<double> coefficient_values (n_q_points, 1.0);
-
- // not only active cells
- MGDoFHandler<dim>::cell_iterator cell = mg_dof_handler.begin(),
- endc = mg_dof_handler.end();
- for (; cell!=endc; ++cell)
- {
- cell_matrix.clear ();
- cell_rhs.clear ();
-
- fe_values.reinit (cell);
- const FullMatrix<double>
- & shape_values = fe_values.get_shape_values();
- const vector<vector<Tensor<1,dim> > >
- & shape_grads = fe_values.get_shape_grads();
- const vector<double>
- & JxW_values = fe_values.get_JxW_values();
- const vector<Point<dim> >
- & q_points = fe_values.get_quadrature_points();
-
- // FIX
-// coefficient.value_list (q_points, coefficient_values);
-
- for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- {
- for (unsigned int j=0; j<dofs_per_cell; ++j)
- cell_matrix(i,j) += (coefficient_values[q_point] *
- (shape_grads[i][q_point] *
- shape_grads[j][q_point] +
- shape_values(i,q_point) *
- shape_values(j,q_point) ) *
- JxW_values[q_point]);
-
- cell_rhs(i) += (shape_values (i,q_point) *
- sin(4*sqrt(q_points[q_point].square())) *
- fe_values.JxW (q_point));
- };
-
-
- cell->get_mg_dof_indices (local_dof_indices);
- const unsigned int level = cell->level();
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- for (unsigned int j=0; j<dofs_per_cell; ++j)
- level_system_matrices[level].add (local_dof_indices[i],
- local_dof_indices[j],
- cell_matrix(i,j));
-
- // if active, then also into
- // global matrix
- if (cell->active())
- {
- cell->get_dof_indices (local_dof_indices);
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- {
- for (unsigned int j=0; j<dofs_per_cell; ++j)
- global_system_matrix.add (local_dof_indices[i],
- local_dof_indices[j],
- cell_matrix(i,j));
-
- system_rhs(local_dof_indices[i]) += cell_rhs(i);
- };
- };
- };
-
- hanging_node_constraints.condense (global_system_matrix);
- hanging_node_constraints.condense (system_rhs);
-
-// map<unsigned int,double> boundary_values;
-// VectorTools::interpolate_boundary_values (mg_dof_handler,
-// 0,
-// ZeroFunction<dim>(),
-// boundary_values);
-// MatrixTools<dim>::apply_boundary_values (boundary_values,
-// global_system_matrix,
-// solution,
-// system_rhs);
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::solve ()
-{
-
- {
- SolverControl solver_control (1000, 1e-12);
- PrimitiveVectorMemory<> vector_memory;
- SolverCG<> cg (solver_control, vector_memory);
-
- SolverControl coarse_grid_solver_control (1000, 1e-12);
- PrimitiveVectorMemory<> coarse_grid_vector_memory;
-
- SolverCG<> coarse_grid_cg (coarse_grid_solver_control,
- coarse_grid_vector_memory);
-
-// PreconditionRelaxation<>
-// coarse_grid_solver_preconditioner(level_system_matrices[level_system_matrices.get_minlevel()],
-// &SparseMatrix<double>::template precondition_SSOR<double>,
-// 1.2);
- PreconditionIdentity coarse_grid_solver_preconditioner;
-
- MGCoarseGridLACIteration<SolverCG<>, SparseMatrix<double>, PreconditionIdentity>
- coarse_grid_solver (coarse_grid_cg,
- level_system_matrices[level_system_matrices.get_minlevel()],
- coarse_grid_solver_preconditioner);
-
- MGSmootherLAC smoother (level_system_matrices);
- MGTransferPrebuilt grid_transfer;
- grid_transfer.build_matrices (mg_dof_handler);
-
- Multigrid<2> multigrid (mg_dof_handler,
- hanging_node_constraints,
- level_sparsity_patterns,
- level_system_matrices,
- grid_transfer);
-
- PreconditionMG<Multigrid<2> >
- mg_precondition (multigrid, smoother, smoother, coarse_grid_solver);
-
- solution.clear ();
- cg.solve (global_system_matrix, solution, system_rhs,
- mg_precondition);
-
- cout << " MG Outer iterations: " << solver_control.last_step()
- << endl;
-
- cout << " MG Total inner iterations: " << coarse_grid_solver_control.last_step()
- << endl;
- };
-
- {
- SolverControl solver_control (1000, 1e-12);
- PrimitiveVectorMemory<> vector_memory;
- SolverCG<> cg (solver_control, vector_memory);
-
- PreconditionRelaxation<>
- preconditioner(global_system_matrix,
- &SparseMatrix<double>::template precondition_SSOR<double>,
- 1.2);
-
- solution.clear ();
- cg.solve (global_system_matrix, solution, system_rhs,
- preconditioner);
-
- cout << " CG Outer iterations: " << solver_control.last_step()
- << endl;
- };
-
- hanging_node_constraints.distribute (solution);
-};
-
-
-template <int dim>
-void LaplaceProblem<dim>::refine_grid ()
-{
- Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
-
- KellyErrorEstimator<dim>::FunctionMap neumann_boundary;
- KellyErrorEstimator<dim>::estimate (mg_dof_handler,
- QGauss3<dim-1>(),
- neumann_boundary,
- solution,
- estimated_error_per_cell);
-
- triangulation.refine_and_coarsen_fixed_number (estimated_error_per_cell,
- 0.3, 0.03);
- triangulation.execute_coarsening_and_refinement ();
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::output_results (const unsigned int cycle) const
-{
- string filename = "grid-";
- filename += ('0' + cycle);
- Assert (cycle < 10, ExcInternalError());
-
- filename += ".eps";
- ofstream output (filename.c_str());
-
- GridOut grid_out;
- grid_out.write_eps (triangulation, output);
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::run ()
-{
- for (unsigned int cycle=0; cycle<8; ++cycle)
- {
- cout << "Cycle " << cycle << ':' << endl;
-
- if (cycle == 0)
- {
- GridGenerator::hyper_cube (triangulation);
- triangulation.refine_global (1);
- }
- else
- {
- refine_grid ();
- };
-
-
- cout << " Number of active cells: "
- << triangulation.n_active_cells()
- << endl;
-
- setup_system ();
-
- cout << " Number of degrees of freedom: "
- << mg_dof_handler.DoFHandler<dim>::n_dofs()
- << endl;
-
- assemble_system ();
- solve ();
- output_results (cycle);
-
- DataOut<dim>::EpsFlags eps_flags;
- eps_flags.z_scaling = 4;
-
- DataOut<dim> data_out;
- data_out.set_flags (eps_flags);
-
- data_out.attach_dof_handler (mg_dof_handler);
- data_out.add_data_vector (solution, "solution");
- data_out.build_patches ();
-
- ofstream output ("final-solution.eps");
- data_out.write_eps (output);
- };
-};
-
-
-
-int main ()
-{
- try
- {
- deallog.depth_console (0);
-
- LaplaceProblem<2> laplace_problem_2d;
- laplace_problem_2d.run ();
- }
- catch (exception &exc)
- {
- cerr << endl << endl
- << "----------------------------------------------------"
- << endl;
- cerr << "Exception on processing: " << endl
- << exc.what() << endl
- << "Aborting!" << endl
- << "----------------------------------------------------"
- << endl;
- return 1;
- }
- catch (...)
- {
- cerr << endl << endl
- << "----------------------------------------------------"
- << endl;
- cerr << "Unknown exception!" << endl
- << "Aborting!" << endl
- << "----------------------------------------------------"
- << endl;
- return 1;
- };
-
- return 0;
-};
+++ /dev/null
-# $Id$
-# Copyright W. Bangerth, University of Heidelberg, 1998
-
-# Template for makefiles for the examples subdirectory. In principle,
-# everything should be done automatically if you set the target file
-# here correctly:
-target = nonlinear
-
-# All dependencies between files should be updated by the included
-# file Makefile.dep if necessary. Object files are compiled into
-# the archives ./Obj.a and ./Obj.g.a. By default, the debug version
-# is used to link. It you don't like that, change the following
-# variable to "off"
-debug-mode = off
-
-# If you want your program to be linked with extra object or library
-# files, specify them here:
-user-libs =
-
-# To run the program, use "make run"; to give parameters to the program,
-# give the parameters to the following variable:
-run-parameters = $(target).prm
-
-# To execute additional action apart from running the program, fill
-# in this list:
-additional-run-action = gnuplot make_ps
-
-# To specify which files are to be deleted by "make clean" (apart from
-# the usual ones: object files, executables, backups, etc), fill in the
-# following list
-delete-files = gnuplot* *.eps
-
-
-
-
-###############################################################################
-# Internals
-
-#deal include base path
-D = ../../../..
-
-include ../../../Make.global_options
-
-
-
-# get lists of files we need
-cc-files = $(filter-out *%, $(shell echo *.cc))
-o-files = $(cc-files:.cc=.o)
-go-files = $(cc-files:.cc=.go)
-h-files = $(filter-out *%, $(shell echo *.h))
-lib-h-files = $(filter-out *%, $(shell echo ../../include/*.h))
-
-# list of libraries needed to link with
-libs.g = ./Obj.g.a \
- $(lib-deal2-2d.g) \
- $(lib-lac.g) \
- $(lib-base.g)
-libs = ./Obj.a \
- $(lib-deal2-2d.o) \
- $(lib-lac.o) \
- $(lib-base.o)
-
-
-# check whether we use debug mode or not
-ifeq ($(debug-mode),on)
-libraries = $(libs.g)
-flags = $(CXXFLAGS.g)
-endif
-
-ifeq ($(debug-mode),off)
-libraries = $(libs)
-flags = $(CXXFLAGS)
-endif
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
- libraries += $(lib-ACE)
-endif
-
-
-# make rule for the target
-$(target) : $(libraries)
- @echo ============================ Linking $@
- @$(CXX) $(flags) -o $@ $^ $(user-libs)
-
-# rule how to run the program
-run: $(target)
- $(target) $(run-parameters)
- $(additional-run-action)
-
-
-# rule to make object files
-%.go : %.cc
- @echo ============================ Compiling with debugging information: $<
- @echo $(CXX) ... -c $< -o $@
- @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
- @echo ============================ Compiling with optimization: $<
- @echo $(CXX) ... -c $< -o $@
- @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# rules which files the libraries depend upon
-Obj.a: ./Obj.a($(o-files))
-Obj.g.a: ./Obj.g.a($(go-files))
-
-
-clean:
- -rm -f *.o *.go *~ Makefile.dep Obj.a Obj.g.a $(target) $(delete-files)
-
-
-
-.PHONY: clean
-
-
-#Rule to generate the dependency file. This file is
-#automagically remade whenever needed, i.e. whenever
-#one of the cc-/h-files changed. Make detects whether
-#to remake this file upon inclusion at the bottom
-#of this file.
-#
-#use perl to generate rules for the .go files as well
-#as to make rules not for tria.o and the like, but
-#rather for libnumerics.a(tria.o)
-Makefile.dep: $(cc-files) $(h-files) $(lib-h-files)
- @echo ============================ Remaking Makefile
- @perl ../../../Make_dep.pl ./Obj $(INCLUDE) $(cc-files) \
- > Makefile.dep
-
-
-include Makefile.dep
-
+++ /dev/null
-/* $Id$ */
-/* Copyright W. Bangerth, University of Heidelberg, 1998 */
-
-
-
-
-#include <lac/vector.h>
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
-#include <grid/tria_accessor.h>
-#include <dofs/dof_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria_boundary.h>
-#include <grid/grid_generator.h>
-#include <numerics/data_io.h>
-#include <base/function.h>
-#include <fe/fe_lib.lagrange.h>
-#include <base/quadrature_lib.h>
-#include <numerics/base.h>
-#include <numerics/assembler.h>
-#include <numerics/error_estimator.h>
-
-#include <map>
-#include <fstream>
-#include <cmath>
-#include <cstdlib>
-
-
-
-
-
-template <int dim>
-class RightHandSide : public Function<dim>
-{
- public:
- double value (const Point<dim> &p) const
- {
- double x = 80;
- for (unsigned int d=0; d<dim; ++d)
- if (p(d) < 0.5)
- x *= -p(d);
- else
- x *= (1-p(d));
-
- return x;
- };
-};
-
-
-
-template <int dim>
-class PoissonEquation : public Equation<dim> {
- public:
- PoissonEquation (const Function<dim> &rhs,
- const Vector<double> &last_solution) :
- Equation<dim>(1),
- right_hand_side (rhs),
- last_solution(last_solution) {};
-
- virtual void assemble (FullMatrix<double> &cell_matrix,
- Vector<double> &rhs,
- const FEValues<dim> &fe_values,
- const DoFHandler<dim>::cell_iterator &cell) const;
- virtual void assemble (FullMatrix<double> &cell_matrix,
- const FEValues<dim> &fe_values,
- const DoFHandler<dim>::cell_iterator &cell) const;
- virtual void assemble (Vector<double> &rhs,
- const FEValues<dim> &fe_values,
- const DoFHandler<dim>::cell_iterator &cell) const;
- protected:
- const Function<dim> &right_hand_side;
- const Vector<double> &last_solution;
-};
-
-
-
-
-
-
-template <int dim>
-class NonlinearProblem : public ProblemBase<dim> {
- public:
- NonlinearProblem ();
- void run ();
-
- protected:
- Triangulation<dim> *tria;
- DoFHandler<dim> *dof;
-
- Vector<double> last_solution;
-};
-
-
-
-
-template <int dim>
-void PoissonEquation<dim>::assemble (FullMatrix<double> &cell_matrix,
- Vector<double> &rhs,
- const FEValues<dim> &fe_values,
- const DoFHandler<dim>::cell_iterator &) const {
- const vector<vector<Tensor<1,dim> > >&gradients = fe_values.get_shape_grads ();
- const FullMatrix<double> &values = fe_values.get_shape_values ();
- vector<double> rhs_values (fe_values.n_quadrature_points);
- const vector<double> &weights = fe_values.get_JxW_values ();
-
- vector<Tensor<1,dim> > last_solution_grads(fe_values.n_quadrature_points);
- fe_values.get_function_grads (last_solution, last_solution_grads);
-
-
- right_hand_side.value_list (fe_values.get_quadrature_points(), rhs_values);
-
- for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
- for (unsigned int i=0; i<fe_values.total_dofs; ++i)
- {
- for (unsigned int j=0; j<fe_values.total_dofs; ++j)
- cell_matrix(i,j) += (gradients[i][point] *
- gradients[j][point]) *
- weights[point] /
- sqrt(1+last_solution_grads[i]*last_solution_grads[i]);
- rhs(i) += values(i,point) *
- rhs_values[point] *
- weights[point];
- };
-};
-
-
-
-
-template <int dim>
-void PoissonEquation<dim>::assemble (FullMatrix<double> &,
- const FEValues<dim> &,
- const DoFHandler<dim>::cell_iterator &) const {
- Assert (false, ExcPureVirtualFunctionCalled());
-};
-
-
-
-template <int dim>
-void PoissonEquation<dim>::assemble (Vector<double> &,
- const FEValues<dim> &,
- const DoFHandler<dim>::cell_iterator &) const {
- Assert (false, ExcPureVirtualFunctionCalled());
-};
-
-
-
-
-template <int dim>
-NonlinearProblem<dim>::NonlinearProblem () :
- tria(0), dof(0) {};
-
-
-
-template <int dim>
-void NonlinearProblem<dim>::run () {
-
- // first reset everything to a virgin state
- clear ();
-
- tria = new Triangulation<dim>();
- dof = new DoFHandler<dim> (tria);
- set_tria_and_dof (tria, dof);
-
-
- RightHandSide<dim> rhs;
- ZeroFunction<dim> boundary_values;
- StraightBoundary<dim> boundary;
-
- FELinear<dim> fe;
- PoissonEquation<dim> equation (rhs, last_solution);
- QGauss2<dim> quadrature;
-
- ProblemBase<dim>::FunctionMap dirichlet_bc;
- dirichlet_bc[0] = &boundary_values;
-
-
- GridGenerator::hypercube (*tria);
- tria->refine_global (4);
-
- for (unsigned int refinement_step=0; refinement_step<10; ++refinement_step)
- {
- cout << "Refinement step " << refinement_step << endl
- << " Grid has " << tria->n_active_cells() << " active cells." << endl;
-
- cout << " Distributing dofs... ";
- dof->distribute_dofs (fe);
- cout << dof->n_dofs() << " degrees of freedom." << endl;
-
- // set the starting values for the iteration
- // to a constant value of 1
- last_solution.reinit (dof->n_dofs());
- for (unsigned int i=0; i<dof->n_dofs(); ++i)
- last_solution(i) = 1;
-
-
- // here comes the fixed point iteration
- for (unsigned int nonlinear_step=0; nonlinear_step<10; ++nonlinear_step)
- {
- cout << " Nonlinear step " << nonlinear_step << endl;
- cout << " Assembling matrices..." << endl;
- assemble (equation, quadrature, fe,
- UpdateFlags(update_values | update_gradients |
- update_JxW_values | update_q_points),
- dirichlet_bc);
-
- cout << " Solving..." << endl;
- solve ();
-
- if (nonlinear_step % 2 == 0)
- {
- string filename = "nonlinear.";
- filename += ('0' + refinement_step);
- filename += '.';
- filename += ('0' + (nonlinear_step/2));
- filename += ".gnuplot";
- cout << " Writing to file <" << filename << ">..." << endl;
-
- DataOut<dim> out;
- ofstream gnuplot(filename.c_str());
- fill_data (out);
- out.write_gnuplot (gnuplot);
- gnuplot.close ();
- };
-
- last_solution = solution;
- };
-
- Vector<float> error_indicator;
- KellyErrorEstimator<dim> ee;
- QSimpson<dim-1> eq;
- ee.estimate_error (*dof, eq, fe,
- KellyErrorEstimator<dim>::FunctionMap(),
- solution,
- error_indicator);
- tria->refine_and_coarsen_fixed_number (error_indicator, 0.3, 0);
- tria->execute_coarsening_and_refinement ();
- };
-
-
- delete dof;
- delete tria;
-
- cout << endl;
-};
-
-
-
-
-int main ()
-{
- NonlinearProblem<2> problem;
- problem.run ();
-};
+++ /dev/null
-poisson
-Makefile.dep
-*.go
-Makefile.dep
-*.go
-*.o
+++ /dev/null
-# $Id$
-# Copyright W. Bangerth, University of Heidelberg, 1998
-
-# Template for makefiles for the examples subdirectory. In principle,
-# everything should be done automatically if you set the target file
-# here correctly:
-target = poisson
-
-# All dependencies between files should be updated by the included
-# file Makefile.dep if necessary. Object files are compiled into
-# the archives ./Obj.a and ./Obj.g.a. By default, the debug version
-# is used to link. It you don't like that, change the following
-# variable to "off"
-debug-mode = on
-
-# If you want your program to be linked with extra object or library
-# files, specify them here:
-user-libs =
-
-# To run the program, use "make run"; to give parameters to the program,
-# give the parameters to the following variable:
-run-parameters = $(target).prm
-
-# To execute additional action apart from running the program, fill
-# in this list:
-additional-run-action = cd results ; gnuplot make_ps
-
-# To specify which files are to be deleted by "make clean" (apart from
-# the usual ones: object files, executables, backups, etc), fill in the
-# following list
-delete-files = results/*gnuplot results/*.eps
-
-
-
-
-###############################################################################
-# Internals
-
-#deal include base path
-D = ../../..
-
-include $D/common/Make.global_options
-
-
-
-# get lists of files we need
-cc-files = $(filter-out *%, $(shell echo *.cc))
-o-files = $(cc-files:.cc=.o)
-go-files = $(cc-files:.cc=.go)
-h-files = $(filter-out *%, $(shell echo *.h))
-lib-h-files = $(filter-out *%, $(shell echo ../../include/*/*.h))
-
-# list of libraries needed to link with
-libs.g = ./Obj.g.a \
- $(lib-deal2-2d.g) \
- $(lib-lac.g) \
- $(lib-base.g)
-libs = ./Obj.a \
- $(lib-deal2-2d.o) \
- $(lib-lac.o) \
- $(lib-base.o)
-
-
-
-# check whether we use debug mode or not
-ifeq ($(debug-mode),on)
-libraries = $(libs.g)
-flags = $(CXXFLAGS.g)
-endif
-
-ifeq ($(debug-mode),off)
-libraries = $(libs)
-flags = $(CXXFLAGS)
-endif
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
- libraries += $(lib-ACE)
-endif
-
-
-# make rule for the target
-$(target) : $(libraries)
- @echo ============================ Linking $@
- @$(CXX) $(flags) -o $@ $^ $(user-libs)
-
-# rule how to run the program
-run: $(target)
- ./$(target) $(run-parameters)
- $(additional-run-action)
-
-
-# rule to make object files
-%.go : %.cc
- @echo ============================ Compiling with debugging information: $<
- @echo $(CXX) ... -c $< -o $@
- @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
- @echo ============================ Compiling with optimization: $<
- @echo $(CXX) ... -c $< -o $@
- @$(CXX) $(CXXFLAGS.o) -c $< -o $@
-
-
-# rules which files the libraries depend upon
-Obj.a: ./Obj.a($(o-files))
-Obj.g.a: ./Obj.g.a($(go-files))
-
-
-clean:
- -rm -f *.o *.go *~ Makefile.dep Obj.a Obj.g.a $(target) $(delete-files)
-
-
-
-.PHONY: clean
-
-
-#Rule to generate the dependency file. This file is
-#automagically remade whenever needed, i.e. whenever
-#one of the cc-/h-files changed. Make detects whether
-#to remake this file upon inclusion at the bottom
-#of this file.
-#
-#use perl to generate rules for the .go files as well
-#as to make rules not for tria.o and the like, but
-#rather for libnumerics.a(tria.o)
-Makefile.dep: $(cc-files) $(h-files) $(lib-h-files)
- @echo ============================ Remaking Makefile
- @perl $D/common/scripts/Make_dep.pl ./Obj $(INCLUDE) $(cc-files) \
- > Makefile.dep
-
-
-include Makefile.dep
-
+++ /dev/null
-/* $Id$ */
-/* Copyright W. Bangerth, University of Heidelberg, 1998 */
-
-
-#include "poisson.h"
-#include <lac/vector.h>
-
-
-
-#if deal_II_dimension == 1
-
-template <>
-void PoissonEquation<1>::assemble (FullMatrix<double> &cell_matrix,
- Vector<double> &rhs,
- const FEValues<1> &fe_values,
- const DoFHandler<1>::cell_iterator &) const {
- for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
- for (unsigned int i=0; i<fe_values.total_dofs; ++i)
- {
- for (unsigned int j=0; j<fe_values.total_dofs; ++j)
- cell_matrix(i,j) += (fe_values.shape_grad(i,point) *
- fe_values.shape_grad(j,point)) *
- fe_values.JxW(point);
- rhs(i) += fe_values.shape_value(i,point) *
- right_hand_side(fe_values.quadrature_point(point)) *
- fe_values.JxW(point);
- };
-};
-
-#endif
-
-
-
-//#if deal_II_dimension >= 2
-
-template <int dim>
-void PoissonEquation<dim>::assemble (FullMatrix<double> &cell_matrix,
- Vector<double> &rhs,
- const FEValues<dim> &fe_values,
- const DoFHandler<dim>::cell_iterator &) const {
- const vector<vector<Tensor<1,dim> > >&gradients = fe_values.get_shape_grads ();
- const FullMatrix<double> &values = fe_values.get_shape_values ();
- vector<double> rhs_values (fe_values.n_quadrature_points);
- const vector<double> &weights = fe_values.get_JxW_values ();
-
- right_hand_side.value_list (fe_values.get_quadrature_points(), rhs_values);
-
- for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
- for (unsigned int i=0; i<fe_values.dofs_per_cell; ++i)
- {
- for (unsigned int j=0; j<fe_values.dofs_per_cell; ++j)
- cell_matrix(i,j) += (gradients[i][point] *
- gradients[j][point]) *
- weights[point];
- rhs(i) += values(i,point) *
- rhs_values[point] *
- weights[point];
- };
-};
-
-//#endif
-
-
-
-template <int dim>
-void PoissonEquation<dim>::assemble (FullMatrix<double> &,
- const FEValues<dim> &,
- const DoFHandler<dim>::cell_iterator &) const {
- Assert (false, ExcPureVirtualFunctionCalled());
-};
-
-
-
-template <int dim>
-void PoissonEquation<dim>::assemble (Vector<double> &,
- const FEValues<dim> &,
- const DoFHandler<dim>::cell_iterator &) const {
- Assert (false, ExcPureVirtualFunctionCalled());
-};
-
-
-
-
-
-
-template class PoissonEquation<2>;
+++ /dev/null
-/* $Id$ */
-/* Copyright W. Bangerth, University of Heidelberg, 1998 */
-
-
-
-#include "poisson.h"
-#include <lac/vector.h>
-#include <base/logstream.h>
-
-
-int main (int argc, char **argv) {
- if (argc!=2)
- {
- cout << "Usage: poisson parameterfile" << endl << endl;
- return 1;
- };
-
- // no additional output to console
- deallog.depth_console (0);
-
- PoissonProblem<2> poisson;
- MultipleParameterLoop input_data;
-
- poisson.declare_parameters(input_data);
- input_data.read_input (argv[1]);
- input_data.loop (poisson);
-
- return 0;
-};
+++ /dev/null
-/*---------------------------- poisson.h ---------------------------*/
-/* $Id$ */
-/* Copyright W. Bangerth, University of Heidelberg, 1998 */
-#ifndef __poisson_H
-#define __poisson_H
-/*---------------------------- poisson.h ---------------------------*/
-
-
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
-#include <grid/tria_accessor.h>
-#include <dofs/dof_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria_boundary.h>
-#include <dofs/dof_constraints.h>
-#include <numerics/data_io.h>
-#include <base/function.h>
-#include <base/parameter_handler.h>
-#include <fe/fe_lib.lagrange.h>
-#include <base/quadrature_lib.h>
-#include <numerics/base.h>
-#include <numerics/assembler.h>
-#include <lac/sparse_matrix.h>
-
-
-#include <map>
-#include <fstream>
-#include <cmath>
-#include <cstdlib>
-
-
-
-
-
-
-
-template <int dim>
-class PoissonEquation : public Equation<dim> {
- public:
- PoissonEquation (const Function<dim> &rhs) :
- Equation<dim>(1),
- right_hand_side (rhs) {};
-
- virtual void assemble (FullMatrix<double> &cell_matrix,
- Vector<double> &rhs,
- const FEValues<dim> &fe_values,
- const DoFHandler<dim>::cell_iterator &cell) const;
- virtual void assemble (FullMatrix<double> &cell_matrix,
- const FEValues<dim> &fe_values,
- const DoFHandler<dim>::cell_iterator &cell) const;
- virtual void assemble (Vector<double> &rhs,
- const FEValues<dim> &fe_values,
- const DoFHandler<dim>::cell_iterator &cell) const;
- protected:
- const Function<dim> &right_hand_side;
-};
-
-
-
-
-
-
-template <int dim>
-class PoissonProblem : public ProblemBase<dim>,
- public MultipleParameterLoop::UserClass {
- public:
- PoissonProblem ();
- virtual ~PoissonProblem();
-
- void clear ();
-
- virtual void create_new (const unsigned int run_no);
- virtual void declare_parameters (ParameterHandler &prm);
- virtual void run (ParameterHandler &prm);
-
-
- bool make_grid (ParameterHandler &prm);
- void make_zoom_in_grid ();
- void make_random_grid ();
-
- bool set_right_hand_side (ParameterHandler &prm);
- bool set_boundary_values (ParameterHandler &prm);
-
- protected:
- Triangulation<dim> *tria;
- DoFHandler<dim> *dof;
-
- Function<dim> *rhs;
- Function<dim> *boundary_values;
-
- Boundary<dim> *boundary;
-};
-
-
-
-
-
-/*---------------------------- poisson.h ---------------------------*/
-/* end of #ifndef __poisson_H */
-#endif
-/*---------------------------- poisson.h ---------------------------*/
+++ /dev/null
-set Test run = { zoom in | ball | curved line | random | jump | L-region | slit domain}
-set Global refinement = {{ 2 | 5 | 6 | 0 | 3 | 5 | 5 }}
-set Right hand side = {{ zero | zero | trigpoly | constant | zero | zero | poly }}
-set Boundary values = {{ sine | sine | zero | zero | jump | sine | sine }}
-set Output file = results/{{ zoom_in | ball | curved_line | random | jump | L-region | slit_domain }}.gnuplot
+++ /dev/null
-/* $Id$ */
-/* Copyright W. Bangerth, University of Heidelberg, 1998 */
-
-
-
-#include "poisson.h"
-#include <lac/vector.h>
-#include <grid/grid_generator.h>
-#include <grid/tria_boundary_lib.h>
-#include <numerics/data_out.h>
-
-
-template <int dim>
-class BoundaryValuesSine : public Function<dim> {
- public:
- /**
- * Return the value of the function
- * at the given point.
- */
- virtual double value (const Point<dim> &p,
- const unsigned int component) const {
- Assert (component==0, ExcIndexRange (component, 0, 1));
-
- double x = 1;
-
- for (unsigned int i=0; i<dim; ++i)
- x *= cos(2*3.1415926536*p(i));
- return x;
- };
-
- /**
- * Return the value of the function
- * at the given point.
- */
- virtual void value (const Point<dim> &p,
- Vector<double> &values) const {
- Assert (values.size()==1, ExcVectorHasWrongSize (values.size(), 1));
-
- double x = 1;
-
- for (unsigned int i=0; i<dim; ++i)
- x *= cos(2*3.1415926536*p(i));
-
- values(0) = x;
- };
-
-
- /**
- * Set #values# to the point values
- * of the function at the #points#.
- * It is assumed that #values# be
- * empty.
- */
- virtual void value_list (const vector<Point<dim> > &points,
- vector<double> &values,
- const unsigned int component) const {
- Assert (values.size() == points.size(),
- ExcVectorHasWrongSize(values.size(), points.size()));
- for (unsigned int i=0; i<points.size(); ++i)
- values[i] = BoundaryValuesSine<dim>::value (points[i], component);
- };
-};
-
-
-
-template <int dim>
-class BoundaryValuesJump : public Function<dim> {
- public:
- /**
- * Return the value of the function
- * at the given point.
- */
- virtual double value (const Point<dim> &p,
- const unsigned int component) const {
- Assert (component==0, ExcIndexRange (component, 0, 1));
- switch (dim)
- {
- case 1:
- return 0;
- default:
- if (p(0) == p(1))
- return 0.5;
- else
- return (p(0)>p(1) ? 0. : 1.);
- };
- };
-};
-
-
-
-
-template <int dim>
-class RHSTrigPoly : public Function<dim> {
- public:
- /**
- * Return the value of the function
- * at the given point.
- */
- virtual double value (const Point<dim> &p,
- const unsigned int) const;
-};
-
-
-
-/**
- Right hand side constructed such that the exact solution is
- $x(1-x)$ in 1d, $x(1-x)*y(1-y)$ in 2d, etc.
- */
-template <int dim>
-class RHSPoly : public Function<dim> {
- public:
- /**
- * Return the value of the function
- * at the given point.
- */
- virtual double value (const Point<dim> &p,
- const unsigned int) const;
-};
-
-
-
-
-
-
-
-
-
-template <int dim>
-class CurvedLine :
- public StraightBoundary<dim> {
- public:
- virtual Point<dim>
- get_new_point_on_line (const typename Triangulation<dim>::line_iterator &line) const;
-
- virtual Point<dim>
- get_new_point_on_quad (const typename Triangulation<dim>::quad_iterator &quad) const;
-};
-
-
-
-template <int dim>
-Point<dim>
-CurvedLine<dim>::get_new_point_on_line (const typename Triangulation<dim>::line_iterator &line) const
-{
- Point<dim> middle = StraightBoundary<dim>::get_new_point_on_line (line);
-
- // if the line is at the top of bottom
- // face: do a special treatment on
- // this line. Note that if the
- // z-value of the midpoint is either
- // 0 or 1, then the z-values of all
- // vertices of the line is like that
- if (dim>=3)
- if (((middle(2) == 0) || (middle(2) == 1))
- // find out, if the line is in the
- // interior of the top or bottom face
- // of the domain, or at the edge.
- // lines at the edge need to undergo
- // the usual treatment, while for
- // interior lines taking the midpoint
- // is sufficient
- //
- // note: the trick with the boundary
- // id was invented after the above was
- // written, so we are not very strict
- // here with using these flags
- && (line->boundary_indicator() == 1))
- return middle;
-
-
- double x=middle(0),
- y=middle(1);
-
- if (y<x)
- if (y<1-x)
- middle(1) = 0.04*sin(6*3.141592*middle(0));
- else
- middle(0) = 1+0.04*sin(6*3.141592*middle(1));
-
- else
- if (y<1-x)
- middle(0) = 0.04*sin(6*3.141592*middle(1));
- else
- middle(1) = 1+0.04*sin(6*3.141592*middle(0));
-
- return middle;
-};
-
-
-
-template <int dim>
-Point<dim>
-CurvedLine<dim>::get_new_point_on_quad (const typename Triangulation<dim>::quad_iterator &quad) const
-{
- Point<dim> middle = StraightBoundary<dim>::get_new_point_on_quad (quad);
-
- // if the face is at the top of bottom
- // face: do not move the midpoint in
- // x/y direction. Note that if the
- // z-value of the midpoint is either
- // 0 or 1, then the z-values of all
- // vertices of the quad is like that
- if ((middle(2) == 0) || (middle(2) == 1))
- return middle;
-
- double x=middle(0),
- y=middle(1);
-
- if (y<x)
- if (y<1-x)
- middle(1) = 0.04*sin(6*3.141592*middle(0));
- else
- middle(0) = 1+0.04*sin(6*3.141592*middle(1));
-
- else
- if (y<1-x)
- middle(0) = 0.04*sin(6*3.141592*middle(1));
- else
- middle(1) = 1+0.04*sin(6*3.141592*middle(0));
-
- return middle;
-};
-
-
-
-
-template <int dim>
-double RHSTrigPoly<dim>::value (const Point<dim> &p,
- const unsigned int component) const {
- Assert (component==0, ExcIndexRange (component, 0, 1));
-
- const double pi = 3.1415926536;
- switch (dim)
- {
- case 1:
- return p(0)*p(0)*cos(2*pi*p(0));
- case 2:
- return (-2.0*cos(pi*p(0)/2)*p(1)*sin(pi*p(1)) +
- 2.0*p(0)*sin(pi*p(0)/2)*pi*p(1)*sin(pi*p(1)) +
- 5.0/4.0*p(0)*p(0)*cos(pi*p(0)/2)*pi*pi*p(1)*sin(pi*p(1)) -
- 2.0*p(0)*p(0)*cos(pi*p(0)/2)*cos(pi*p(1))*pi);
- default:
- return 0;
- };
-};
-
-
-
-template <int dim>
-double RHSPoly<dim>::value (const Point<dim> &p,
- const unsigned int component) const {
- Assert (component==0, ExcIndexRange (component, 0, 1));
-
- double ret_val = 0;
- for (unsigned int i=0; i<dim; ++i)
- ret_val += 2*p(i)*(1.-p(i));
- return ret_val;
-};
-
-
-
-
-
-template <int dim>
-PoissonProblem<dim>::PoissonProblem () :
- tria(0), dof(0), rhs(0), boundary_values(0), boundary(0) {};
-
-
-
-template <int dim>
-PoissonProblem<dim>::~PoissonProblem ()
-{
- clear ();
-};
-
-
-
-template <int dim>
-void PoissonProblem<dim>::clear () {
- if (dof != 0) {
- delete dof;
- dof = 0;
- };
-
- if (boundary != 0)
- {
- tria->set_boundary (0);
- delete boundary;
- boundary = 0;
- };
-
- if (tria != 0) {
- delete tria;
- tria = 0;
- };
-
- // make it known to the underlying
- // ProblemBase that tria and dof
- // are already deleted
- set_tria_and_dof (tria, dof);
-
-
- if (rhs != 0)
- {
- delete rhs;
- rhs = 0;
- };
-
- if (boundary_values != 0)
- {
- delete boundary_values;
- boundary_values = 0;
- };
-
- ProblemBase<dim>::clear ();
-};
-
-
-
-
-template <int dim>
-void PoissonProblem<dim>::create_new (const unsigned int) {
- clear ();
-
- tria = new Triangulation<dim>();
- dof = new DoFHandler<dim> (*tria);
- set_tria_and_dof (tria, dof);
-};
-
-
-
-
-template <int dim>
-void PoissonProblem<dim>::declare_parameters (ParameterHandler &prm) {
- if (dim>=2)
- prm.declare_entry ("Test run", "zoom in",
- Patterns::Selection("tensor|zoom in|ball|curved line|"
- "random|jump|L-region|slit domain"));
- else
- prm.declare_entry ("Test run", "zoom in",
- Patterns::Selection("tensor|zoom in|random"));
-
- prm.declare_entry ("Global refinement", "0",
- Patterns::Integer());
- prm.declare_entry ("Right hand side", "zero",
- Patterns::Selection("zero|constant|trigpoly|poly"));
- prm.declare_entry ("Boundary values", "zero",
- Patterns::Selection("zero|sine|jump"));
- prm.declare_entry ("Output file", "gnuplot.1");
-};
-
-
-
-
-template <int dim>
-bool PoissonProblem<dim>::make_grid (ParameterHandler &prm) {
- string test = prm.get ("Test run");
- unsigned int test_case;
- if (test=="zoom in") test_case = 1;
- else
- if (test=="ball") test_case = 2;
- else
- if (test=="curved line") test_case = 3;
- else
- if (test=="random") test_case = 4;
- else
- if (test=="tensor") test_case = 5;
- else
- if (test=="jump") test_case = 6;
- else
- if (test=="L-region") test_case = 7;
- else
- if (test=="slit domain") test_case = 8;
- else
- {
- cerr << "This test seems not to be implemented!" << endl;
- return false;
- };
-
- switch (test_case)
- {
- case 1:
- boundary = new StraightBoundary<dim>();
- tria->set_boundary (0, *boundary);
- make_zoom_in_grid ();
- break;
- case 2:
- // make ball grid around origin with
- // unit radius
- {
- static const Point<dim> origin;
- boundary = new HyperBallBoundary<dim>(origin, 1.);
- GridGenerator::hyper_ball (*tria, origin, 1.);
- tria->set_boundary (0, *boundary);
- break;
- };
- case 3:
- // set the boundary function
- {
- boundary = new CurvedLine<dim>();
- GridGenerator::hyper_cube (*tria);
- tria->set_boundary (0, *boundary);
- break;
- };
- case 4:
- boundary = new StraightBoundary<dim>();
- tria->set_boundary (0, *boundary);
- make_random_grid ();
- break;
- case 5:
- boundary = new StraightBoundary<dim>();
- tria->set_boundary (0, *boundary);
- GridGenerator::hyper_cube (*tria);
- break;
- case 6:
- boundary = new StraightBoundary<dim>();
- tria->set_boundary (0, *boundary);
- GridGenerator::hyper_cube (*tria);
- tria->refine_global (1);
- for (unsigned int i=0; i<5; ++i)
- {
- tria->begin_active(tria->n_levels()-1)->set_refine_flag();
- (--(tria->last_active()))->set_refine_flag();
- tria->execute_coarsening_and_refinement ();
- };
- break;
- case 7:
- boundary = new StraightBoundary<dim>();
- tria->set_boundary (0, *boundary);
- GridGenerator::hyper_L (*tria);
- break;
- case 8:
- boundary = new StraightBoundary<dim>();
- tria->set_boundary (0, *boundary);
- GridGenerator::hyper_cube_slit (*tria);
- break;
- default:
- return false;
- };
-
- int refine_global = prm.get_integer ("Global refinement");
- if ((refine_global < 0) || (refine_global>10))
- return false;
- else
- tria->refine_global (refine_global);
-
- return true;
-};
-
-
-
-
-template <int dim>
-void PoissonProblem<dim>::make_zoom_in_grid () {
- GridGenerator::hyper_cube (*tria);
-
- // refine first cell
- tria->begin_active()->set_refine_flag();
- tria->execute_coarsening_and_refinement ();
- // refine first active cell
- // on coarsest level
- tria->begin_active()->set_refine_flag ();
- tria->execute_coarsening_and_refinement ();
-
- Triangulation<dim>::active_cell_iterator cell;
- for (int i=0; i<(dim==3 ? 5 : 17); ++i)
- {
- // refine the presently
- // second last cell several
- // times
- cell = tria->last_active(tria->n_levels()-1);
- --cell;
- cell->set_refine_flag ();
- tria->execute_coarsening_and_refinement ();
- };
-};
-
-
-
-
-template <int dim>
-void PoissonProblem<dim>::make_random_grid () {
- GridGenerator::hyper_cube (*tria);
- tria->refine_global (1);
-
- Triangulation<dim>::active_cell_iterator cell, endc;
- for (int i=0; i<(dim==3 ? 7 : 12); ++i)
- {
- int n_levels = tria->n_levels();
- cell = tria->begin_active();
- endc = tria->end();
-
- for (; cell!=endc; ++cell)
- {
- double r = rand()*1.0/RAND_MAX,
- weight = 1.*
- (cell->level()*cell->level()) /
- (n_levels*n_levels);
-
- if (r <= 0.5*weight)
- cell->set_refine_flag ();
- };
-
- tria->execute_coarsening_and_refinement ();
- };
-};
-
-
-
-
-template <int dim>
-bool PoissonProblem<dim>::set_right_hand_side (ParameterHandler &prm) {
- string rhs_name = prm.get ("Right hand side");
-
- if (rhs_name == "zero")
- rhs = new ZeroFunction<dim>();
- else
- if (rhs_name == "constant")
- rhs = new ConstantFunction<dim>(1.);
- else
- if (rhs_name == "trigpoly")
- rhs = new RHSTrigPoly<dim>();
- else
- if (rhs_name == "poly")
- rhs = new RHSPoly<dim> ();
- else
- return false;
-
- if (rhs != 0)
- return true;
- else
- return false;
-};
-
-
-
-template <int dim>
-bool PoissonProblem<dim>::set_boundary_values (ParameterHandler &prm) {
- string bv_name = prm.get ("Boundary values");
-
- if (bv_name == "zero")
- boundary_values = new ZeroFunction<dim> ();
- else
- if (bv_name == "sine")
- boundary_values = new BoundaryValuesSine<dim> ();
- else
- if (bv_name == "jump")
- boundary_values = new BoundaryValuesJump<dim> ();
- else
- {
- cout << "Unknown boundary value function " << bv_name << endl;
- return false;
- };
-
- if (boundary_values != 0)
- return true;
- else
- return false;
-};
-
-
-
-
-template <int dim>
-void PoissonProblem<dim>::run (ParameterHandler &prm) {
- cout << "Test case = " << prm.get ("Test run")
- << endl;
-
- cout << " Making grid... ";
- if (!make_grid (prm))
- return;
- cout << tria->n_active_cells() << " active cells." << endl;
-
- if (!set_right_hand_side (prm))
- return;
-
- if (!set_boundary_values (prm))
- return;
-
- FEQ1<dim> fe;
- PoissonEquation<dim> equation (*rhs);
- QGauss2<dim> quadrature;
-
- cout << " Distributing dofs... ";
- dof->distribute_dofs (fe);
- cout << dof->n_dofs() << " degrees of freedom." << endl;
-
- cout << " Assembling matrices..." << endl;
- ProblemBase<dim>::FunctionMap dirichlet_bc;
- dirichlet_bc[0] = boundary_values;
- assemble (equation, quadrature,
- UpdateFlags(update_values | update_gradients |
- update_JxW_values | update_q_points),
- dirichlet_bc);
-
- cout << " Solving..." << endl;
- solve ();
-
- cout << " Writing to file <" << prm.get("Output file") << ">..."
- << endl;
-
- DataOut<dim> out;
- string o_filename = prm.get ("Output file");
- ofstream gnuplot(o_filename.c_str());
- out.attach_dof_handler (*dof_handler);
- out.add_data_vector (solution, "solution");
- out.build_patches ();
- out.write_gnuplot (gnuplot);
- gnuplot.close ();
-
- // release the lock of the DoF object to
- // the FE object
- dof->clear ();
-
- cout << endl;
-};
-
-
-
-
-
-template class PoissonProblem<2>;
+++ /dev/null
-*.gnuplot
-*.eps
+++ /dev/null
-set data style lines
-set noxtics
-set noytics
-set noztics
-set nokey
-set para
-set hidden3d
-set term postscript eps
-
-!echo " Making <zoom_in.eps>"
-set output "zoom_in.eps"
-splot "zoom_in.gnuplot"
-
-!echo " Making <ball.eps>"
-set output "ball.eps"
-splot "ball.gnuplot"
-
-!echo " Making <curved_line.eps>"
-set output "curved_line.eps"
-splot "curved_line.gnuplot"
-
-!echo " Making <random.eps>"
-set output "random.eps"
-splot "random.gnuplot"
-
-!echo " Making <jump.eps>"
-set output "jump.eps"
-splot "jump.gnuplot"
-
-!echo " Making <L-region.eps>"
-set view 52,115
-set output "L-region.eps"
-splot "L-region.gnuplot"
-
-!echo " Making <slit_domain.eps>"
-set view 52,115
-set output "slit_domain.eps"
-splot "slit_domain.gnuplot"
+++ /dev/null
-# $Id$
-#
-# This Makefile only recurses into the subdirs
-
-
-# existing examples. take dirnames and strip 'step'
-steps = $(shell echo step-*)
-
-
-# default is: build all examples. for each example, there is a target
-# build-step-N, where N in [1...]
-default: $(addprefix build-,$(steps))
-
-# run example programs; make a target run-step-N for each N
-run: $(addprefix run-,$(steps))
-
-# clean subdirs; make a target clean-step-N for each N
-clean: $(addprefix clean-,$(steps))
-
-
-
-# for each build/run/clean target: strip the build- prefix of the
-# target and build in that directory
-build-step-%:
- cd $(@:build-%=%) ; $(MAKE)
-run-step-%:
- cd $(@:run-%=%) ; $(MAKE) run
-clean-step-%:
- cd $(@:clean-%=%) ; $(MAKE) clean
-
-
-# all targets in this directory do not produce files, so they are
-# .PHONY:
-.PHONY: $(addprefix build-step-,$(steps)) \
- $(addprefix run-step-,$(steps)) \
- $(addprefix clean-step-,$(steps))
+++ /dev/null
-*.o *.go Makefile.dep *.gnuplot *.gmv *.eps
-step-1
+++ /dev/null
-# $Id$
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = $(basename $(shell echo step-*.cc))
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../../../
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g = $(lib-deal2-2d.g) \
- $(lib-lac.g) \
- $(lib-base.g)
-libs.o = $(lib-deal2-2d.o) \
- $(lib-lac.o) \
- $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
- libraries = $(target).go $(libs.g)
- flags = $(CXXFLAGS.g)
-else
- libraries = $(target).go $(libs.o)
- flags = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
- libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
- @echo ============================ Linking $@
- @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
- @echo ============================ Running $<
- @./$(target)
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
- -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
- @echo ==============debug========= $(<F)
- @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
- @echo ==============optimized===== $(<F)
- @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-(include-path-base)/baseh-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script. Since the
-# script prefixes the output names by `lib(include-path-base)/baseo' or `lib(include-path-base)/basego' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
- $(shell echo $(include-path-base)/base/*.h \
- $(include-path-lac)/lac/*.h \
- $(include-path-deal2)/*/*.h)
- @echo ============================ Remaking Makefile
- @perl $D/common/scripts/make_dependencies.pl $(INCLUDE) $(target).cc \
- | perl -pi -e 's!lib/g?o/!!g;' \
- > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
+++ /dev/null
-/* $Id$ */
-/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */
-
- // The most fundamental class in the
- // library is the ``Triangulation''
- // class, which is declared here:
-#include <grid/tria.h>
- // We need the following two includes
- // for loops over cells and/or faces:
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
- // Here are some functions to
- // generate standard grids:
-#include <grid/grid_generator.h>
- // We would like to use boundaries
- // which are not straight lines, so
- // we import some classes which
- // predefine some boundary
- // descriptions:
-#include <grid/tria_boundary_lib.h>
- // Output of grids in various
- // graphics formats:
-#include <grid/grid_out.h>
-
- // This is needed for C++ output:
-#include <fstream>
-
-
-
- // In the following function, we
- // simply use the unit square as
- // domain and produce a globally
- // refined grid from it.
-void first_grid ()
-{
- // Define an object for a
- // triangulation of a
- // two-dimensional domain. Here and
- // in many following cases, the
- // string "<2>" after a class name
- // indicates that this is an object
- // that shall work in two space
- // dimensions. Likewise, there are
- // version working in one ("<1>")
- // and three ("<3>") space
- // dimensions, or for all
- // dimensions. We will see such
- // constructs in later examples,
- // where we show how to program
- // dimension independently.
- // (At present, only one through
- // three space dimensions are
- // supported, but that is not a
- // restriction. In case someone
- // would like to implement four
- // dimensional finite elements, for
- // example for general relativity,
- // this would be a straightforward
- // thing.)
- Triangulation<2> triangulation;
-
- // Fill it with a square
- GridGenerator::hyper_cube (triangulation);
-
- // Refine all cells four times, to
- // yield 4^4=256 cells in total
- triangulation.refine_global (4);
-
- // Now we want to write it to some
- // output, here in postscript
- // format
- ofstream out ("grid-1.eps");
- GridOut grid_out;
- grid_out.write_eps (triangulation, out);
-};
-
-
-
- // The grid in the following function
- // is slightly more complicated in
- // that we use a ring domain and
- // refine the result once globally
-void second_grid ()
-{
- // Define an object for a
- // triangulation of a
- // two-dimensional domain
- Triangulation<2> triangulation;
-
- // Fill it with a ring domain. The
- // center of the ring shall be the
- // point (1,0), and inner and outer
- // radius shall be 0.5 and 1. The
- // number of circumferentical cells
- // will be adjusted automatically
- // by this function (in this case,
- // there will be 10)
- const Point<2> center (1,0);
- const double inner_radius = 0.5,
- outer_radius = 1.0;
- GridGenerator::hyper_shell (triangulation,
- center, inner_radius, outer_radius);
- // By default, the triangulation
- // assumes that all boundaries are
- // straight and given by the cells
- // of the coarse grid (which we
- // just created). Here, however, we
- // would like to have a curved
- // boundary. Furtunately, some good
- // soul implemented an object which
- // describes the boundary of a ring
- // domain; it only needs the center
- // of the ring and automatically
- // figures out the inner and outer
- // radius when needed. Note that we
- // associate this boundary object
- // with that part of the boundary
- // that has the "boundary number"
- // zero. By default, all boundary
- // parts have this number, but you
- // might want to change this number
- // for some parts, and then the
- // curved boundary thus associated
- // with number zero will not apply
- // there.
- const HyperShellBoundary<2> boundary_description(center);
- triangulation.set_boundary (0, boundary_description);
-
- // Now, just for the purpose of
- // demonstration and for no
- // particular reason, we will
- // refine the grid in five steps
- // towards the inner circle of the
- // domain:
- for (unsigned int step=0; step<5; ++step)
- {
- // Get an iterator which points
- // to a cell and which we will
- // move over all active cells
- // one by one. Active cells are
- // those that are not further
- // refined
- Triangulation<2>::active_cell_iterator cell, endc;
- cell = triangulation.begin_active();
- endc = triangulation.end();
-
- // Now loop over all cells...
- for (; cell!=endc; ++cell)
- // ...and over all vertices
- // of the cells. Note the
- // dimension-independent way
- // by which we find out about
- // the number of faces of a
- // cell
- for (unsigned int vertex=0;
- vertex < GeometryInfo<2>::vertices_per_cell;
- ++vertex)
- {
- // If this cell is at the
- // inner boundary, then
- // at least one of its vertices
- // must have a radial
- // distance from the center
- // of 0.5
- const Point<2> vector_to_center
- = (cell->vertex(vertex) - center);
- const double distance_from_center
- = sqrt(vector_to_center.square());
-
- if (fabs(distance_from_center - inner_radius) < 1e-10)
- {
- // Ok, this is one of
- // the cells we were
- // looking for. Flag
- // it for refinement
- // and go to the next
- // cell by breaking
- // the loop over all
- // vertices
- cell->set_refine_flag ();
- break;
- };
- };
-
- // Refine the cells which we
- // have marked
- triangulation.execute_coarsening_and_refinement ();
- };
-
-
- // Now we want to write it to some
- // output, here in postscript
- // format
- ofstream out ("grid-2.eps");
- GridOut grid_out;
- grid_out.write_eps (triangulation, out);
-
-
- // At this point, all objects
- // created in this function will be
- // destroyed in reverse
- // order. Unfortunately, we defined
- // the boundary object after the
- // triangulation, which still has a
- // pointer to it and the library
- // will produce an error if the
- // boundary object is destroyed
- // before the triangulation. We
- // therefore have to release it,
- // which can be done as
- // follows. Note that this sets the
- // boundary object used for part
- // "0" of the boundary back to a
- // default object, over which the
- // triangulation has full control.
- triangulation.set_boundary (0);
-};
-
-
-
- // Main function. Only call the two
- // subfunctions, which produce the
- // two grids.
-int main ()
-{
- first_grid ();
- second_grid ();
-};
+++ /dev/null
-*.o *.go Makefile.dep *.gnuplot *.gmv *.eps
-step-2
+++ /dev/null
-# $Id$
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = $(basename $(shell echo step-*.cc))
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../../../
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g = $(lib-deal2-2d.g) \
- $(lib-lac.g) \
- $(lib-base.g)
-libs.o = $(lib-deal2-2d.o) \
- $(lib-lac.o) \
- $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
- libraries = $(target).go $(libs.g)
- flags = $(CXXFLAGS.g)
-else
- libraries = $(target).go $(libs.o)
- flags = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
- libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
- @echo ============================ Linking $@
- @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
- @echo ============================ Running $<
- @./$(target)
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
- -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
- @echo ==============debug========= $(<F)
- @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
- @echo ==============optimized===== $(<F)
- @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-(include-path-base)/baseh-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script. Since the
-# script prefixes the output names by `lib(include-path-base)/baseo' or `lib(include-path-base)/basego' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
- $(shell echo $(include-path-base)/base/*.h \
- $(include-path-lac)/lac/*.h \
- $(include-path-deal2)/*/*.h)
- @echo ============================ Remaking Makefile
- @perl $D/common/scripts/make_dependencies.pl $(INCLUDE) $(target).cc \
- | perl -pi -e 's!lib/g?o/!!g;' \
- > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
+++ /dev/null
-/* $Id$ */
-/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */
-
- // The following includes are just
- // like for the previous program, so
- // will not be commented further
-#include <grid/tria.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/grid_generator.h>
-#include <grid/tria_boundary_lib.h>
-
- // We need this include file for the
- // association of degrees of freedom
- // ("DoF"s) to vertices, lines, and
- // cells.
-#include <dofs/dof_handler.h>
- // The following include contains the
- // description of the bilinear finite
- // element, including the facts that
- // it has one degree of freedom on
- // each vertex of the triangulation,
- // but none on faces and none in the
- // interior of the cells.
- //
- // In fact, the file contains the
- // description of several more finite
- // elements as well, such as
- // biquadratic, bicubic and biquartic
- // elements, but not only for two
- // space dimensions, but also for one
- // and three dimensions.
-#include <fe/fe_lib.lagrange.h>
- // In the following file, several
- // tools for manipulating degrees of
- // freedom can be found:
-#include <dofs/dof_tools.h>
- // We will use a sparse matrix to
- // visualize the pattern of nonzero
- // entries resulting from the
- // distribution of degrees of freedom
- // on the grid. That class can be
- // found here:
-#include <lac/sparse_matrix.h>
- // We will want to use a special
- // algorithm to renumber degrees of
- // freedom. It is declared here:
-#include <numerics/dof_renumbering.h>
-
- // This is needed for C++ output:
-#include <fstream>
-
-
-
- // This is the function that produced
- // the circular grid in the previous
- // example. The sole difference is
- // that it returns the grid it
- // produces via its argument.
- //
- // We won't comment on the internals
- // of this function, since this has
- // been done in the previous
- // example. If you don't understand
- // what is happening here, look
- // there.
-void make_grid (Triangulation<2> &triangulation)
-{
- const Point<2> center (1,0);
- const double inner_radius = 0.5,
- outer_radius = 1.0;
- GridGenerator::hyper_shell (triangulation,
- center, inner_radius, outer_radius);
-
- // This is the single difference to
- // the respetive function in the
- // previous program: since we want
- // to export the triangulation
- // through this function's
- // parameter, we need to make sure
- // that the boundary object lives
- // at least as long as the
- // triangulation does. However,
- // since the boundary object is a
- // local variable, it would be
- // deleted at the end of this
- // function, which is too early; by
- // declaring it 'static', we can
- // assure that it lives until the
- // end of the program.
- static const HyperShellBoundary<2> boundary_description(center);
- triangulation.set_boundary (0, boundary_description);
-
- for (unsigned int step=0; step<5; ++step)
- {
- Triangulation<2>::active_cell_iterator cell, endc;
- cell = triangulation.begin_active();
- endc = triangulation.end();
-
- for (; cell!=endc; ++cell)
- for (unsigned int vertex=0;
- vertex < GeometryInfo<2>::vertices_per_cell;
- ++vertex)
- {
- const Point<2> vector_to_center
- = (cell->vertex(vertex) - center);
- const double distance_from_center
- = sqrt(vector_to_center.square());
-
- if (fabs(distance_from_center - inner_radius) < 1e-10)
- {
- cell->set_refine_flag ();
- break;
- };
- };
-
- triangulation.execute_coarsening_and_refinement ();
- };
-};
-
-
- // Up to now, we only have a grid,
- // i.e. some geometrical (the
- // position of the vertices and which
- // vertices make up which cell) and
- // some topological information
- // (neighborhoods of cells). To use
- // numerical algorithms, one needs
- // some logic information in addition
- // to that: we would like to
- // associate degree of freedom
- // numbers to each vertex (or line,
- // or cell, in case we were using
- // higher order elements) to later
- // generate matrices and vectors
- // which describe a finite element
- // field on the triangulation.
-void distribute_dofs (DoFHandler<2> &dof_handler)
-{
- // In order to associate degrees of
- // freedom with features of a
- // triangulation (vertices, lines,
- // quadrilaterals), we need an
- // object which describes how many
- // degrees of freedom are to be
- // associated to each of these
- // objects. For (bi-, tri-)linear
- // finite elements, this is done
- // using the FEQ1 class, which
- // states that one degree of
- // freedom is to be assigned to
- // each vertex, while there are
- // none on lines and inside the
- // quadrilateral. We first need to
- // create an object of this class
- // and use it to distribute the
- // degrees of freedom. Note that
- // the DoFHandler object will store
- // a reference to this object, so
- // we need to make it static as
- // well, in order to prevent its
- // preemptive
- // destruction. (However, the
- // library would warn us about this
- // and exit the program if that
- // occured. You can check this, if
- // you want, by removing the
- // 'static' declaration.)
- static const FEQ1<2> finite_element;
- dof_handler.distribute_dofs (finite_element);
-
- // Now we have associated a number
- // to each vertex, but how can we
- // visualize this? Unfortunately,
- // presently there is no way
- // implemented to directly show the
- // DoF number associated with each
- // vertex. However, such
- // information would hardly ever be
- // truly important, since the
- // numbering itself is more or less
- // arbitrary. There are more
- // important factors, of which we
- // will visualize one in the
- // following.
- //
- // Associated with each vertex of
- // the triangulation is a shape
- // function. Assume we want to
- // solve something like Laplace's
- // equation, then the different
- // matrix entries will be the
- // integrals over the gradient of
- // each two such shape
- // functions. Obviously, since the
- // shape functions are not equal to
- // zero only on the cells adjacent
- // to the vertex they are
- // associated to, matrix entries
- // will be nonzero only of the
- // supports of the shape functions
- // associated to the column and row
- // numbers intersect. This is only
- // the case for adjacent shape
- // functions, and therefore only
- // for adjacent vertices. Now,
- // since the vertices are numbered
- // more or less randomly be the
- // above function
- // (distribute_dofs), the pattern
- // of nonzero entries in the matrix
- // will be somewhat ragged, and we
- // will take a look at it now.
- //
- // First we have to create a
- // structure which we use to store
- // the places of nonzero
- // elements. We have to give it the
- // size of the matrix, which in our
- // case will be square with that
- // many rows and columns as there
- // are degrees of freedom on the
- // grid:
- SparsityPattern sparsity_pattern (dof_handler.n_dofs(),
- dof_handler.n_dofs());
- // We fill it with the places where
- // nonzero elements will be located
- // given the present numbering of
- // degrees of freedom:
- DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
- // Before further work can be done
- // on the object, we have to allow
- // for some internal
- // reorganization:
- sparsity_pattern.compress ();
-
- // Now write the results to a file
- ofstream out ("sparsity_pattern.1");
- sparsity_pattern.print_gnuplot (out);
- // The result is in GNUPLOT format,
- // where in each line of the output
- // file, the coordinates of one
- // nonzero entry are listed. The
- // output will be shown below.
- //
- // If you look at it, you will note
- // that the sparsity pattern is
- // symmetric, which is quite often
- // so, unless you have a rather
- // special equation you want to
- // solve. You will also note that
- // it has several distinct region,
- // which stem from the fact that
- // the numbering starts from the
- // coarsest cells and moves on to
- // the finer ones; since they are
- // all distributed symmetrically
- // around the origin, this shows up
- // again in the sparsity pattern.
-};
-
-
-
- // In the sparsity pattern produced
- // above, the nonzero entries
- // extended quite far off from the
- // diagonal. For some algorithms,
- // this is unfavorable, and we will
- // show a simple way how to improve
- // this situation.
- //
- // Remember that for an entry (i,j)
- // in the matrix to be nonzero, the
- // supports of the shape functions i
- // and j needed to intersect
- // (otherwise in the integral, the
- // integrand would be zero everywhere
- // since either the one or the other
- // shape function is zero at some
- // point). However, the supports of
- // shape functions intersected only
- // of they were adjacent to each
- // other, so in order to have the
- // nonzero entries clustered around
- // the diagonal (where i equals j),
- // we would like to have adjacent
- // shape functions to be numbered
- // with indices (DoF numbers) that
- // differ not too much.
- //
- // This can be accomplished by a
- // simple front marching algorithm,
- // where one starts at a given vertex
- // and gives it the index zero. Then,
- // its neighbors are numbered
- // successively, making their indices
- // close to the original one. Then,
- // their neighbors, if not yet
- // numbered, are numbered, and so
- // on. One such algorithm is the one
- // by Cuthill and McKee, which is a
- // little more complicated, but works
- // along the same lines. We will use
- // it to renumber the degrees of
- // freedom such that the resulting
- // sparsity pattern is more localized
- // around the diagonal.
-void renumber_dofs (DoFHandler<2> &dof_handler)
-{
- // Renumber the degrees of freedom...
- DoFRenumbering::Cuthill_McKee (dof_handler);
- // ...regenerate the sparsity pattern...
- SparsityPattern sparsity_pattern (dof_handler.n_dofs(),
- dof_handler.n_dofs());
- DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
- sparsity_pattern.compress ();
- // ...and output the result:
- ofstream out ("sparsity_pattern.2");
- sparsity_pattern.print_gnuplot (out);
- // Again, the output is shown
- // below. Note that the nonzero
- // entries are clustered far better
- // around the diagonal than
- // before. This effect is even more
- // distinguished for larger
- // matrices (the present one has
- // 1260 rows and columns, but large
- // matrices often have several
- // 100,000s).
-};
-
-
-
-
- // This is the main program, which
- // only calls the other functions in
- // their respective order.
-int main ()
-{
- // Allocate space for a triangulation...
- Triangulation<2> triangulation;
- // ...and create it
- make_grid (triangulation);
-
- // A variable that will hold the
- // information which vertex has
- // which number. The geometric
- // information is passed as
- // parameter and a pointer to the
- // triangulation will be stored
- // inside the DoFHandler object.
- DoFHandler<2> dof_handler (triangulation);
- // Associate vertices and degrees
- // of freedom.
- distribute_dofs (dof_handler);
-
- // Show the effect of renumbering
- // of degrees of freedom to the
- // sparsity pattern of the matrix.
- renumber_dofs (dof_handler);
-};
+++ /dev/null
-*.o *.go Makefile.dep *.gnuplot *.gmv *.eps
-step-3
+++ /dev/null
-# $Id$
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = $(basename $(shell echo step-*.cc))
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../../../
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g = $(lib-deal2-2d.g) \
- $(lib-lac.g) \
- $(lib-base.g)
-libs.o = $(lib-deal2-2d.o) \
- $(lib-lac.o) \
- $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
- libraries = $(target).go $(libs.g)
- flags = $(CXXFLAGS.g)
-else
- libraries = $(target).go $(libs.o)
- flags = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
- libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
- @echo ============================ Linking $@
- @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
- @echo ============================ Running $<
- @./$(target)
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
- -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
- @echo ==============debug========= $(<F)
- @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
- @echo ==============optimized===== $(<F)
- @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-(include-path-base)/baseh-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script. Since the
-# script prefixes the output names by `lib(include-path-base)/baseo' or `lib(include-path-base)/basego' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
- $(shell echo $(include-path-base)/base/*.h \
- $(include-path-lac)/lac/*.h \
- $(include-path-deal2)/*/*.h)
- @echo ============================ Remaking Makefile
- @perl $D/common/scripts/make_dependencies.pl $(INCLUDE) $(target).cc \
- | perl -pi -e 's!lib/g?o/!!g;' \
- > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
+++ /dev/null
-/* $Id$ */
-/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */
-
- // These include files are already
- // known to you. They declare the
- // classes which handle
- // triangulations and enumerate the
- // degrees of freedom.
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
- // And this is the file in which the
- // functions are declared which
- // create grids.
-#include <grid/grid_generator.h>
-
- // The next three files contain
- // classes which are needed for loops
- // over all cells and to get the
- // information from the cell objects.
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <dofs/dof_accessor.h>
-
- // In this file are the finite
- // element descriptions.
-#include <fe/fe_lib.lagrange.h>
-
- // And this file is needed for the
- // creation of sparsity patterns of
- // sparse matrices, as shown in
- // previous examples:
-#include <dofs/dof_tools.h>
-
- // The next two file are needed for
- // assembling the matrix using
- // quadrature on each cell. The
- // classes declared in them will be
- // explained below.
-#include <fe/fe_values.h>
-#include <base/quadrature_lib.h>
-
- // The following three include files
- // we need for the treatment of
- // boundary values:
-#include <base/function.h>
-#include <numerics/vectors.h>
-#include <numerics/matrices.h>
-
- // These include files are for the
- // linear algebra which we employ to
- // solve the system of equations
- // arising from the finite element
- // discretization of the Laplace
- // equation. We will use vectors and
- // full matrices for assembling the
- // system of equations locally on
- // each cell, and transfer the
- // results into a sparse matrix. We
- // will then use a Conjugate Gradient
- // solver to solve the problem, for
- // which we need a preconditioner (in
- // this program, we use the identity
- // preconditioner which does nothing,
- // but we need to include the file
- // anyway), and a class which
- // provides the solver with some
- // memory for temporary vectors.
-#include <lac/vector.h>
-#include <lac/full_matrix.h>
-#include <lac/sparse_matrix.h>
-#include <lac/solver_cg.h>
-#include <lac/vector_memory.h>
-#include <lac/precondition.h>
-
- // Finally, this is for output to a
- // file.
-#include <numerics/data_out.h>
-#include <fstream>
-
-
- // Instead of the procedural
- // programming of previous examples,
- // we encapsulate everything into a
- // class for this program. The class
- // consists of functions which do
- // certain aspects of a finite
- // element program, a `main' function
- // which controls what is done first
- // and what is done next, and a list
- // of member variables.
-class LaplaceProblem
-{
- public:
- // This is the constructor:
- LaplaceProblem ();
-
- // And the top-level function,
- // which is called from the
- // outside to start the whole
- // program (see the `main'
- // function at the bottom of this
- // file):
- void run ();
-
- // Then there are some member
- // functions that mostly do what
- // their names suggest. Since
- // they do not need to be called
- // from outside, they are made
- // private to this class.
- private:
- void make_grid_and_dofs ();
- void assemble_system ();
- void solve ();
- void output_results () const;
-
- // And then we have the member
- // variables. There are variables
- // describing the triangulation
- // and the numbering of the
- // degrees of freedom...
- Triangulation<2> triangulation;
- FEQ1<2> fe;
- DoFHandler<2> dof_handler;
-
- // ...variables for the sparsity
- // pattern and values of the
- // system matrix resulting from
- // the discretization of the
- // Laplace equation...
- SparsityPattern sparsity_pattern;
- SparseMatrix<double> system_matrix;
-
- // ...and variables which will
- // hold the right hand side and
- // solution vectors.
- Vector<double> solution;
- Vector<double> system_rhs;
-};
-
-
- // Here comes the constructor. It
- // does not much more than associate
- // the dof_handler variable to the
- // triangulation we use. All the
- // other member variables of the
- // LaplaceProblem class have a
- // default constructor which does all
- // we want.
-LaplaceProblem::LaplaceProblem () :
- dof_handler (triangulation)
-{};
-
-
- // Now, the first thing we've got to
- // do is to generate the
- // triangulation on which we would
- // like to do our computation and
- // number each vertex with a degree
- // of freedom. We have seen this in
- // the previous examples before. Then
- // we have to set up space for the
- // system matrix and right hand side
- // of the discretized problem. This
- // is what this function does:
-void LaplaceProblem::make_grid_and_dofs ()
-{
- // First create the grid and refine
- // all cells five times. Since the
- // initial grid (which is the
- // square [-1,1]x[-1,1]) consists
- // of only one cell, the final grid
- // has 32 times 32 cells, for a
- // total of 1024.
- GridGenerator::hyper_cube (triangulation, -1, 1);
- triangulation.refine_global (5);
- // Unsure that 1024 is the correct
- // number? Let's see:
- // n_active_cells return the number
- // of terminal cells. By terminal
- // we mean the cells on the finest
- // grid.
- cout << "Number of active cells: "
- << triangulation.n_active_cells()
- << endl;
- // We stress the adjective
- // `terminal' or `active', since
- // there are more cells, namely the
- // parent cells of the finest
- // cells, their parents, etc, up to
- // the one cell which made up the
- // initial grid. Of course, on the
- // next coarser level, the number
- // of cells is one quarter that of
- // the cells on the finest level,
- // i.e. 256, then 64, 16, 4, and
- // 1. We can get the total number
- // of cells like this:
- cout << "Total number of cells: "
- << triangulation.n_cells()
- << endl;
- // Note the distinction between
- // n_active_cells() and n_cells().
-
- // Next we enumerate all the
- // degrees of freedom. This is done
- // by using the distribute_dofs
- // function, as we have seen in
- // previous examples. Since we use
- // the FEQ1 class, i.e. bilinear
- // elements, this associates one
- // degree of freedom with each
- // vertex.
- dof_handler.distribute_dofs (fe);
-
- // Now that we have the degrees of
- // freedom, we can take a look at
- // how many there are:
- cout << "Number of degrees of freedom: "
- << dof_handler.n_dofs()
- << endl;
- // There should be one DoF for each
- // vertex. Since we have a 32 times
- // 32 grid, the number of DoFs
- // should be 33 times 33, or 1089.
-
- // As we have seen in the previous
- // example, we set up a sparse
- // matrix for the system matrix and
- // tag those entries that might be
- // nonzero. Since that has already
- // been done, we won't discuss the
- // next few lines:
- sparsity_pattern.reinit (dof_handler.n_dofs(),
- dof_handler.n_dofs(),
- dof_handler.max_couplings_between_dofs());
- DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
- sparsity_pattern.compress();
-
- // Now the sparsity pattern is
- // built and fixed (after
- // `compress' has been called, you
- // can't add nonzero entries
- // anymore; the sparsity pattern is
- // `sealed', so to say), and we can
- // initialize the matrix itself
- // with it. Note that the
- // SparsityPattern object does
- // not hold the values of the
- // matrix, it only stores the
- // places where entries are. The
- // entries are themselves stored in
- // objects of type SparseMatrix, of
- // which our variable system_matrix
- // is one.
- //
- // The distinction between sparsity
- // pattern and matrix was made to
- // allow several matrices to use
- // the same sparsity pattern. This
- // may not seem relevant, but when
- // you consider the size which
- // matrices can have, and that it
- // may take some time to build the
- // sparsity pattern, this becomes
- // important in large-scale
- // problems.
- system_matrix.reinit (sparsity_pattern);
-
- // The last thing to do in this
- // function is to set the sizes of
- // the right hand side vector and
- // the solution vector to the right
- // values:
- solution.reinit (dof_handler.n_dofs());
- system_rhs.reinit (dof_handler.n_dofs());
-};
-
-
- // Now comes the difficult part:
- // assembling matrices and
- // vectors. In fact, this is not
- // overly difficult, but it is
- // something that the library can't
- // do for you as for most of the
- // other things in the functions
- // above and below.
- //
- // The general way to assemble
- // matrices and vectors is to loop
- // over all cells, and on each cell
- // compute the contribution of that
- // cell to the global matrix and
- // right hand side by quadrature. The
- // idea now is that since we only
- // need the finite element shape
- // functions on the quadrature points
- // of each cell, we don't need the
- // shape functions of the finite
- // element themselves any
- // more. Therefore, we won't deal
- // with the finite element object
- // `fe' (which was of type FEQ1), but
- // with another object which only
- // provides us with the values,
- // gradients, etc of the shape
- // functions at the quadrature
- // points. The objects which do this
- // are of type FEValues.
-void LaplaceProblem::assemble_system ()
-{
- // Ok, let's start: we need a
- // quadrature formula for the
- // evaluation of the integrals on
- // each cell. Let's take a Gauss
- // formula with two quadrature
- // points in each direction, i.e. a
- // total of four points since we
- // are in 2D. This quadrature
- // formula integrates polynomials
- // of degrees up to three exactly
- // (in 1D). Since the integrands in
- // the matrix entries are quadratic
- // (in 1D), this is sufficient. The
- // same holds for 2D.
- QGauss2<2> quadrature_formula;
- // And we initialize the object
- // which we have briefly talked
- // about above. It needs to be told
- // which the finite element is that
- // we want to use, the quadrature
- // points and their
- // weights. Finally, we have to
- // tell it what we want it to
- // compute on each cell: we need
- // the values of the shape
- // functions at the quadrature
- // points, their gradients, and
- // also the weights of the
- // quadrature points and the
- // determinants of the Jacobian
- // transformations from the unit
- // cell to the real cells. The
- // values of the shape functions
- // computed by specifying
- // update_values; the gradients are
- // done alike, using
- // update_gradients. The
- // determinants of the Jacobians
- // and the weights are always used
- // together, so only the products
- // (Jacobians times weights, or
- // short JxW) are computed; since
- // we also need them, we have to
- // list them as well:
- FEValues<2> fe_values (fe, quadrature_formula,
- UpdateFlags(update_values |
- update_gradients |
- update_JxW_values));
-
- // For use further down below, we
- // define two short cuts for the
- // number of degrees of freedom on
- // each cell (since we are in 2D
- // and degrees of freedom are
- // associated with vertices only,
- // this number is four). We also
- // define an abbreviation for the
- // number of quadrature points
- // (here that should be nine). In
- // general, it is a good idea to
- // use their symbolic names instead
- // of hard-coding these number even
- // if you know them, since you may
- // want to change the quadrature
- // formula and/or finite element at
- // some time; the program will just
- // work with these changes, without
- // the need to change the matrix
- // assemblage.
- //
- // The shortcuts, finally, are only
- // defined to make the following
- // loops a bit more readable. You
- // will see them in many places in
- // larger programs, and
- // `dofs_per_cell' and `n_q_points'
- // are more or less standard names
- // for these purposes.
- const unsigned int dofs_per_cell = fe.dofs_per_cell;
- const unsigned int n_q_points = quadrature_formula.n_quadrature_points;
-
- // Now, we said that we wanted to
- // assemble the global matrix and
- // vector cell-by-cell. We could
- // write the results directly into
- // the global matrix, but this is
- // not very efficient since access
- // to the elements of a sparse
- // matrix is slow. Rather, we first
- // compute the contribution of each
- // ell in a small matrix with the
- // degrees of freedom on the
- // present cell, and only transfer
- // them to the global matrix when
- // the copmutations are finished
- // for this cell. We do the same
- // for the right hand side vector,
- // although access times are not so
- // problematic for them.
- FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);
- Vector<double> cell_rhs (dofs_per_cell);
-
- // When assembling the
- // contributions of each cell, we
- // do this with the local numbering
- // of the degrees of freedom
- // (i.e. the number running from
- // zero through
- // dofs_per_cell-1). However, when
- // we transfer the result into the
- // global matrix, we have to know
- // the global numbers of the
- // degrees of freedom. When we get
- // them, we need a scratch array
- // for these numbers:
- vector<unsigned int> local_dof_indices (dofs_per_cell);
-
- // Now for th loop over all
- // cells. You have seen before how
- // this works, so this should be
- // familiar to you:
- DoFHandler<2>::active_cell_iterator cell = dof_handler.begin_active(),
- endc = dof_handler.end();
- for (; cell!=endc; ++cell)
- {
- // We are on one cell, and we
- // would like the values and
- // gradients of the shape
- // functions be computed, as
- // well as the determinants of
- // the Jacobian matrices of the
- // mapping between unit cell
- // and true cell, at the
- // quadrature points. Since all
- // these values depend on the
- // geometry of the cell, we
- // have to have the FEValues
- // object re-compute them on
- // each cell:
- fe_values.reinit (cell);
-
- // Reset the values of the
- // contributions of this cell
- // to global matrix and global
- // right hand side to zero,
- // before we fill them.
- cell_matrix.clear ();
- cell_rhs.clear ();
-
- // Assemble the matrix: For the
- // Laplace problem, the matrix
- // on each cell is the integral
- // over the gradients of shape
- // function i and j. Since we
- // do not integrate, but rather
- // use quadrature, this is the
- // sum over all quadrature
- // points of the integrands
- // times the determinant of the
- // Jacobian matrix at the
- // quadrature point times the
- // weight of this quadrature
- // point. You can get the
- // gradient of shape function i
- // at quadrature point q_point
- // by using
- // fe_values.shape_grad(i,q_point);
- // this gradient is a
- // 2-dimensional vector (in
- // fact it is of type
- // Tensor<1,dim>, with here
- // dim=2) and the product of
- // two such vectors is the
- // scalar product, i.e. the
- // product of the two
- // shape_grad function calls is
- // the dot product.
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- for (unsigned int j=0; j<dofs_per_cell; ++j)
- for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
- cell_matrix(i,j) += (fe_values.shape_grad (i, q_point) *
- fe_values.shape_grad (j, q_point) *
- fe_values.JxW (q_point));
-
- // We then do the same thing
- // for the right hand
- // side. Here, the integral is
- // over the shape function i
- // times the right hand side
- // function, which we choose to
- // be the function with
- // constant value one (more
- // interesting examples will be
- // considered in the following
- // programs). Again, we compute
- // the integral by quadrature,
- // which transforms the
- // integral to a sum over all
- // quadrature points of the
- // value of the shape function
- // at that point times the
- // right hand side function
- // (i.e. 1) times the Jacobian
- // determinant times the weight
- // of that quadrature point:
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
- cell_rhs(i) += (fe_values.shape_value (i, q_point) *
- 1 *
- fe_values.JxW (q_point));
-
- // Now that we have the
- // contribution of this cell,
- // we have to transfer it to
- // the global matrix and right
- // hand side. To this end, we
- // first have to find out which
- // global numbers the degrees
- // of freedom on this cell
- // have. Let's simply ask the
- // cell for that information:
- cell->get_dof_indices (local_dof_indices);
-
- // Then again loop over all
- // shape functions i and j and
- // transfer the local elements
- // to the global matrix. The
- // global numbers can be
- // obtained using
- // local_dof_indices[i]:
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- for (unsigned int j=0; j<dofs_per_cell; ++j)
- system_matrix.add (local_dof_indices[i],
- local_dof_indices[j],
- cell_matrix(i,j));
-
- // And again, we do the same
- // thing for the right hand
- // side vector.
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- system_rhs(local_dof_indices[i]) += cell_rhs(i);
- };
-
-
- // Now almost everything is set up
- // for the solution of the discrete
- // system. However, we have not yet
- // taken care of boundary values
- // (in fact, Laplace's equation
- // without Dirichlet boundary
- // values is not even uniquely
- // solvable, since you can add an
- // arbitrary constant to the
- // discrete solution). We therefore
- // have to take into account
- // boundary values.
- //
- // For this, we first obtain a list
- // of the degrees of freedom on the
- // boundary and the value the shape
- // function shall have there. For
- // simplicity, we only interpolate
- // the boundary value function,
- // rather than projecting them onto
- // the boundary. There is a
- // function in the library which
- // does exactly this:
- // interpolate_boundary_values. Its
- // parameters are (omitting
- // parameters for which default
- // values exist which are
- // sufficient here): the DoFHandler
- // object to get the global numbers
- // of the degrees of freedom on the
- // boundary; the component of the
- // boundary where the boundary
- // values shall be interpolated;
- // the boundary value function
- // itself; and the output object.
- //
- // The component of the boundary is
- // meant as follows: in many cases,
- // you may want to impose certain
- // boundary values only on parts of
- // the boundary. For example, you
- // may have inflow and outflow
- // boundaries in fluid dynamics,
- // are clamped and free parts of
- // bodies in deformation
- // computations of bodies. Then you
- // will want to denote these
- // different parts of the boundary
- // by different numbers and tell
- // the interpolate_boundary_values
- // function to only compute the
- // boundary values on a certain
- // part of the boundary (e.g. the
- // clamped part, or the inflow
- // boundary). By default, all
- // boundaries have the number `0',
- // and since we have not changed
- // that, this is still so;
- // therefore, if we give `0' as the
- // desired portion of the boundary,
- // this means we get the whole
- // boundary.
- //
- // The function describing the
- // boundary values is an object of
- // type `Function' or of a derived
- // class. One of the derived
- // classes is ZeroFunction, which
- // described a function which is
- // zero everywhere. We create such
- // an object in-place and pass it
- // to the
- // interpolate_boundary_values
- // function.
- //
- // Finally, the output object is a
- // list of pairs of global degree
- // of freedom numbers (i.e. the
- // number of the degrees of freedom
- // on the boundary) and their
- // boundary values (which are zero
- // here for all entries). This
- // mapping of DoF numbers to
- // boundary values is done by the
- // `map' class.
- map<unsigned int,double> boundary_values;
- VectorTools::interpolate_boundary_values (dof_handler,
- 0,
- ZeroFunction<2>(),
- boundary_values);
- // Now that we got the list of
- // boundary DoFs and their
- // respective boundary values,
- // let's use them to modify the
- // system of equations
- // accordingly. This is done by the
- // following function call:
- MatrixTools<2>::apply_boundary_values (boundary_values,
- system_matrix,
- solution,
- system_rhs);
-};
-
-
- // The following function simply
- // solves the discretized
- // equation. As the system is quite a
- // large one for direct solvers such
- // as Gauss elimination or LU
- // decomposition, we use a Conjugate
- // Gradient algorithm. You should
- // remember that the number of
- // variables here (only 1089) is a
- // very small number for finite
- // element computations, where
- // 100.000 is a more usual number;
- // for this number of variables,
- // direct methods are no longer
- // usable and you are forced to use
- // methods like CG.
-void LaplaceProblem::solve ()
-{
- // We need to tell the algorithm
- // where to stop. This is done by
- // using a SolverControl object,
- // and as stopping criterion we
- // say: maximally 1000 iterations
- // (which is far more than is
- // needed for 1089 variables; see
- // the results section to find out
- // how many were really used), and
- // stop if the norm of the residual
- // is below 1e-12. In practice, the
- // latter criterion will be the one
- // which stops the iteration.
- SolverControl solver_control (1000, 1e-12);
- // Furthermore, the CG algorithm
- // needs some space for temporary
- // vectors. Rather than allocating
- // it on the stack or heap itself,
- // it relies on helper objects,
- // which can sometimes do a better
- // job at this. The
- // PrimitiveVectorMemory class is
- // such a helper class which the
- // solver can ask for memory. The
- // angle brackets indicate that
- // this class really takes a
- // template parameter (here the
- // data type of the vectors we
- // use), which however has a
- // default value, which is
- // appropriate here.
- PrimitiveVectorMemory<> vector_memory;
- // Then we need the solver
- // itself. The template parameters
- // here are the matrix type and the
- // type of the vectors. They
- // default to the ones we use here.
- SolverCG<> cg (solver_control, vector_memory);
-
- // Now solve the system of
- // equations. The CG solver takes a
- // preconditioner, but we don't
- // want to use one, so we tell it
- // to use the identity operation as
- // preconditioner.
- cg.solve (system_matrix, solution, system_rhs,
- PreconditionIdentity());
- // Now that the solver has done its
- // job, the solution variable
- // contains the nodal values of the
- // solution function.
-};
-
-
- // The last part of a typical finite
- // element program is to output the
- // results and maybe do some
- // postprocessing (for example
- // compute the maximal stress values
- // at the boundary, or the average
- // flux across the outflow, etc). We
- // have no such postprocessing here,
- // but we would like to write the
- // solution to a file.
-void LaplaceProblem::output_results () const
-{
- // To write the output to a file,
- // we need an object which knows
- // about output formats and the
- // like. This is the DataOut class,
- // and we need an object of that
- // type:
- DataOut<2> data_out;
- // Now we have to tell it where to
- // take the values from which it
- // shall write. We tell it which
- // DoFHandler object to use, and we
- // add the solution vector (and the
- // name by which it shall be
- // written to disk) to the list of
- // data that is to be written. If
- // we had more than one vector
- // which we would like to look at
- // in the output (for example right
- // hand sides, errors per cell,
- // etc) we would add them as well:
- data_out.attach_dof_handler (dof_handler);
- data_out.add_data_vector (solution, "solution");
- // After the DataOut object knows
- // which data it is to work on, we
- // have to tell it to process them
- // into something the backends can
- // handle. The reason is that we
- // have separated the frontend
- // (which knows about how to treat
- // DoFHandler objects and data
- // vectors) from the backend (which
- // knows several output formats)
- // and use an intermediate data
- // format to transfer data from the
- // front- to the backend. The data
- // is transformed into this
- // intermediate format by the
- // following function:
- data_out.build_patches ();
-
- // Now we have everything in place
- // for the actual output. Just open
- // a file and write the data into
- // it, using GNUPLOT format (there
- // are other functions which write
- // their data in postscript, AVS,
- // GMV, or some other format):
- ofstream output ("solution.gpl");
- data_out.write_gnuplot (output);
-};
-
-
- // The following function is the main
- // function which calls all the other
- // functions of the LaplaceProblem
- // class. The order in which this is
- // done resembles the order in which
- // most finite element programs
- // work. Since the names are mostly
- // self-explanatory, there is not
- // much to comment about:
-void LaplaceProblem::run ()
-{
- make_grid_and_dofs ();
- assemble_system ();
- solve ();
- output_results ();
-};
-
-
-
- // This is the main function of the
- // program. Since the concept of a
- // main function is mostly a remnant
- // from the pre-object era in C/C++
- // programming, it often does not
- // much more than creating an object
- // of the top-level class and calling
- // it principle function. This is
- // what is done here as well.
-int main ()
-{
- LaplaceProblem laplace_problem;
- laplace_problem.run ();
- return 0;
-};
+++ /dev/null
-*.o *.go Makefile.dep *.gnuplot *.gmv *.eps
-step-4
+++ /dev/null
-# $Id$
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = $(basename $(shell echo step-*.cc))
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../../../
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g = $(lib-deal2-2d.g) \
- $(lib-deal2-3d.g) \
- $(lib-lac.g) \
- $(lib-base.g)
-libs.o = $(lib-deal2-2d.o) \
- $(lib-deal2-3d.o) \
- $(lib-lac.o) \
- $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
- libraries = $(target).go $(libs.g)
- flags = $(CXXFLAGS.g)
-else
- libraries = $(target).go $(libs.o)
- flags = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
- libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
- @echo ============================ Linking $@
- @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
- @echo ============================ Running $<
- @./$(target)
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
- -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
- @echo ==============debug========= $(<F)
- @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
- @echo ==============optimized===== $(<F)
- @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-(include-path-base)/baseh-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script. Since the
-# script prefixes the output names by `lib(include-path-base)/baseo' or `lib(include-path-base)/basego' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
- $(shell echo $(include-path-base)/base/*.h \
- $(include-path-lac)/lac/*.h \
- $(include-path-deal2)/*/*.h)
- @echo ============================ Remaking Makefile
- @perl $D/common/scripts/make_dependencies.pl $(INCLUDE) $(target).cc \
- | perl -pi -e 's!lib/g?o/!!g;' \
- > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
+++ /dev/null
-/* $Id$ */
-/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */
-
- // The first few (many?) include
- // files have already been used in
- // the previous example, so we will
- // not explain their meaning here
- // again.
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
-#include <grid/grid_generator.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <dofs/dof_accessor.h>
-#include <fe/fe_lib.lagrange.h>
-#include <dofs/dof_tools.h>
-#include <fe/fe_values.h>
-#include <base/quadrature_lib.h>
-#include <base/function.h>
-#include <numerics/vectors.h>
-#include <numerics/matrices.h>
-#include <lac/vector.h>
-#include <lac/full_matrix.h>
-#include <lac/sparse_matrix.h>
-#include <lac/solver_cg.h>
-#include <lac/vector_memory.h>
-#include <lac/precondition.h>
-
-#include <numerics/data_out.h>
-#include <fstream>
-
- // This is new, however: in the
- // previous example we got some
- // unwanted output from the linear
- // solvers. If we want to suppress
- // it, we have to include this file
- // and add a line somewhere to the
- // program; in this program, it was
- // added to the main function.
-#include <base/logstream.h>
-
-
-
- // This is again the same
- // LaplaceProblem class as in the
- // previous example. The only
- // difference is that we have now
- // declared it as a class with a
- // template parameter, and the
- // template parameter is of course
- // the spatial dimension in which we
- // would like to solve the Laplace
- // equation. Of course, several of
- // the member variables depend on
- // this dimension as well, in
- // particular the Triangulation
- // class, which has to represent
- // quadrilaterals or hexahedra,
- // respectively. Apart from this,
- // everything is as before.
-template <int dim>
-class LaplaceProblem
-{
- public:
- LaplaceProblem ();
- void run ();
-
- private:
- void make_grid_and_dofs ();
- void assemble_system ();
- void solve ();
- void output_results () const;
-
- Triangulation<dim> triangulation;
- FEQ1<dim> fe;
- DoFHandler<dim> dof_handler;
-
- SparsityPattern sparsity_pattern;
- SparseMatrix<double> system_matrix;
-
- Vector<double> solution;
- Vector<double> system_rhs;
-};
-
-
- // In the following, we declare two
- // more classes, which will represent
- // the functions of the
- // dim-dimensional space denoting the
- // right hand side and the
- // non-homogeneous Dirichlet boundary
- // values.
- //
- // Each of these classes is derived
- // from a common, abstract base class
- // Function, which declares the
- // common interface which all
- // functions have to follow. In
- // particular, concrete classes have
- // to overload the `value' function,
- // which takes a point in
- // dim-dimensional space as
- // parameters and shall return the
- // value at that point as a `double'
- // variable.
- //
- // The `value' function takes a
- // second argument, which we have
- // here named `component': This is
- // only meant for vector valued
- // functions, where you may want to
- // access a certain component of the
- // vector at the point `p'. However,
- // our functions are scalar, so we
- // need not worry about this
- // parameter and we will not use it
- // in the implementation of the
- // functions. Note that in the base
- // class (Function), the declaration
- // of the `value' function has a
- // default value of zero for the
- // component, so we will access the
- // `value' function of the right hand
- // side with only one parameter,
- // namely the point where we want to
- // evaluate the function.
-template <int dim>
-class RightHandSide : public Function<dim>
-{
- public:
- virtual double value (const Point<dim> &p,
- const unsigned int component = 0) const;
-};
-
-
-
-template <int dim>
-class BoundaryValues : public Function<dim>
-{
- public:
- virtual double value (const Point<dim> &p,
- const unsigned int component = 0) const;
-};
-
-
-
-
- // We wanted the right hand side
- // function to be 4*(x**4+y**4) in
- // 2D, or 4*(x**4+y**4+z**4) in
- // 3D. Unfortunately, this is not as
- // elegantly feasible dimension
- // independently as much of the rest
- // of this program, so we have to do
- // it using a small
- // loop. Fortunately, the compiler
- // knows the size of the loop at
- // compile time, i.e. the number of
- // times the body will be executed,
- // so it can optimize away the
- // overhead needed for the loop and
- // the result will be as fast as if
- // we had used the formulas above
- // right away.
- //
- // Note that the different
- // coordinates (i.e. `x', `y', ...)
- // of the point are accessed using
- // the () operator.
-template <int dim>
-double RightHandSide<dim>::value (const Point<dim> &p,
- const unsigned int) const
-{
- double return_value = 0;
- for (unsigned int i=0; i<dim; ++i)
- return_value += 4*pow(p(i), 4);
-
- return return_value;
-};
-
-
- // The boundary values were to be
- // chosen to be x*x+y*y in 2D, and
- // x*x+y*y+z*z in 3D. This happens to
- // be equal to the square of the
- // vector from the origin to the
- // point at which we would like to
- // evaluate the function,
- // irrespective of the dimension. So
- // that is what we return:
-template <int dim>
-double BoundaryValues<dim>::value (const Point<dim> &p,
- const unsigned int) const
-{
- return p.square();
-};
-
-
-
-
- // This is the constructor of the
- // LaplaceProblem class. It
- // associates the DoFHandler to the
- // triangulation just as in the
- // previous example.
-template <int dim>
-LaplaceProblem<dim>::LaplaceProblem () :
- dof_handler (triangulation)
-{};
-
-
-
- // Grid creation is something
- // inherently dimension
- // dependent. However, as long as the
- // domains are sufficiently similar
- // in 2D or 3D, the library can
- // abstract for you. In our case, we
- // would like to again solve on the
- // square [-1,1]x[-1,1] in 2D, or on
- // the cube [-1,1]x[-1,1]x[-1,1] in
- // 3D; both can be termed
- // ``hyper_cube'', so we may use the
- // same function in whatever
- // dimension we are. Of course, the
- // functions that create a hypercube
- // in two and three dimensions are
- // very much different, but that is
- // something you need not care
- // about. Let the library handle the
- // difficult things.
- //
- // Likewise, associating a degree of
- // freedom with each vertex is
- // something which certainly looks
- // different in 2D and 3D, but that
- // does not need to bother you. This
- // function therefore looks exactly
- // like in the previous example,
- // although it performs actions that
- // in their details are quite
- // different. The only significant
- // difference is the number of cells
- // resulting, which is much higher in
- // three than in two space
- // dimensions!
-template <int dim>
-void LaplaceProblem<dim>::make_grid_and_dofs ()
-{
- GridGenerator::hyper_cube (triangulation, -1, 1);
- triangulation.refine_global (4);
-
- cout << " Number of active cells: "
- << triangulation.n_active_cells()
- << endl
- << " Total number of cells: "
- << triangulation.n_cells()
- << endl;
-
- dof_handler.distribute_dofs (fe);
-
- cout << " Number of degrees of freedom: "
- << dof_handler.n_dofs()
- << endl;
-
- sparsity_pattern.reinit (dof_handler.n_dofs(),
- dof_handler.n_dofs(),
- dof_handler.max_couplings_between_dofs());
- DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
- sparsity_pattern.compress();
-
- system_matrix.reinit (sparsity_pattern);
-
- solution.reinit (dof_handler.n_dofs());
- system_rhs.reinit (dof_handler.n_dofs());
-};
-
-
-
- // Unlike in the previous example, we
- // would now like to use a
- // non-constant right hand side
- // function and non-zero boundary
- // values. Both are tasks that are
- // readily achieved with a only a few
- // new lines of code in the
- // assemblage of the matrix and right
- // hand side.
- //
- // More interesting, though, is they
- // way we assemble matrix and right
- // hand side vector dimension
- // independently: there is simply no
- // difference to the pure
- // two-dimensional case. Since the
- // important objects used in this
- // function (quadrature formula,
- // FEValues) depend on the dimension
- // by way of a template parameter as
- // well, they can take care of
- // setting up properly everything for
- // the dimension for which this
- // function is compiled. By declaring
- // all classes which might depend on
- // the dimension using a template
- // parameter, the library can make
- // nearly all work for you and you
- // don't have to care about most
- // things.
-template <int dim>
-void LaplaceProblem<dim>::assemble_system ()
-{
- QGauss2<dim> quadrature_formula;
-
- // We wanted to have a non-constant
- // right hand side, so we use an
- // object of the class declared
- // above to generate the necessary
- // data. Since this right hand side
- // object is only used in this
- // function, we only declare it
- // here, rather than as a member
- // variable of the LaplaceProblem
- // class, or somewhere else.
- const RightHandSide<dim> right_hand_side;
-
- // Compared to the previous
- // example, in order to evaluate
- // the non-constant right hand side
- // function we now also need the
- // quadrature points on the cell we
- // are presently on (previously,
- // they were only needed on the
- // unit cell, in order to compute
- // the values and gradients of the
- // shape function, which are
- // defined on the unit cell
- // however). We can tell the
- // FEValues object to do for us by
- // giving it the update_q_points
- // flag:
- FEValues<dim> fe_values (fe, quadrature_formula,
- UpdateFlags(update_values |
- update_gradients |
- update_q_points |
- update_JxW_values));
-
- // Note that the following numbers
- // depend on the dimension which we
- // are presently using. However,
- // the FE and Quadrature classes do
- // all the necessary work for you
- // and you don't have to care about
- // the dimension dependent parts:
- const unsigned int dofs_per_cell = fe.dofs_per_cell;
- const unsigned int n_q_points = quadrature_formula.n_quadrature_points;
-
- FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);
- Vector<double> cell_rhs (dofs_per_cell);
-
- vector<unsigned int> local_dof_indices (dofs_per_cell);
-
- // Note here, that a cell is a
- // quadrilateral in two space
- // dimensions, but a hexahedron in
- // 3D. In fact, the
- // active_cell_iterator data type
- // is something different,
- // depending on the dimension we
- // are in, but to the outside world
- // they look alike and you will
- // probably never see a difference
- // although they are totally
- // unrelated.
- DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(),
- endc = dof_handler.end();
- for (; cell!=endc; ++cell)
- {
- fe_values.reinit (cell);
- cell_matrix.clear ();
- cell_rhs.clear ();
-
- // Now we have to assemble the
- // local matrix and right hand
- // side. This is done exactly
- // like in the previous
- // example, but now we revert
- // the order of the loops
- // (which we can safely do
- // since they are independent
- // of each other) and merge the
- // loops for the local matrix
- // and the local vector as far
- // as possible; this makes
- // things a bit faster.
- for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- {
- for (unsigned int j=0; j<dofs_per_cell; ++j)
- cell_matrix(i,j) += (fe_values.shape_grad (i, q_point) *
- fe_values.shape_grad (j, q_point) *
- fe_values.JxW (q_point));
-
- // Here is about the only
- // difference to the
- // previous example:
- // instead of using a
- // constant right hand
- // side, we use the
- // respective object and
- // evaluate it at the
- // quadrature points.
- cell_rhs(i) += (fe_values.shape_value (i, q_point) *
- right_hand_side.value (fe_values.quadrature_point (q_point)) *
- fe_values.JxW (q_point));
- };
-
-
- // The transfer into the global
- // matrix and right hand side
- // is done exactly as before,
- // but here we have again
- // merged some loops for
- // efficiency:
- cell->get_dof_indices (local_dof_indices);
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- {
- for (unsigned int j=0; j<dofs_per_cell; ++j)
- system_matrix.add (local_dof_indices[i],
- local_dof_indices[j],
- cell_matrix(i,j));
-
- system_rhs(local_dof_indices[i]) += cell_rhs(i);
- };
- };
-
-
- // We wanted to have
- // non-homogeneous boundary values
- // in this example, contrary to the
- // one before. This is a simple
- // task, we only have to replace
- // the ZeroFunction used there by
- // an object of the class which
- // describes the boundary values we
- // would like to use (i.e. the
- // BoundaryValues class declared
- // above):
- map<unsigned int,double> boundary_values;
- VectorTools::interpolate_boundary_values (dof_handler,
- 0,
- BoundaryValues<dim>(),
- boundary_values);
- MatrixTools<dim>::apply_boundary_values (boundary_values,
- system_matrix,
- solution,
- system_rhs);
-};
-
-
- // Solving the linear system of
- // equation is something that looks
- // almost identical in most
- // programs. In particular, it is
- // dimension independent, so this
- // function is mostly copied from the
- // previous example.
-template <int dim>
-void LaplaceProblem<dim>::solve ()
-{
- SolverControl solver_control (1000, 1e-12);
- PrimitiveVectorMemory<> vector_memory;
- SolverCG<> cg (solver_control, vector_memory);
- cg.solve (system_matrix, solution, system_rhs,
- PreconditionIdentity());
-
- // We have made one addition,
- // though: since we suppress output
- // from the linear solvers, we have
- // to print the number of
- // iterations by hand.
- cout << " " << solver_control.last_step()
- << " CG iterations needed to obtain convergence."
- << endl;
-};
-
-
-
- // This function also does what the
- // respective one did in the previous
- // example. No changes here for
- // dimension independentce either.
-template <int dim>
-void LaplaceProblem<dim>::output_results () const
-{
- DataOut<dim> data_out;
-
- data_out.attach_dof_handler (dof_handler);
- data_out.add_data_vector (solution, "solution");
-
- data_out.build_patches ();
-
- // Only difference to the previous
- // example: write output in GMV
- // format, rather than for
- // gnuplot. We use the dimension in
- // the filename to generate
- // distinct filenames for each run
- // (in a better program, one would
- // check whether `dim' can have
- // other values than 2 or 3, but we
- // neglect this here for the sake
- // of brevity).
- ofstream output (dim == 2 ?
- "solution-2d.gmv" :
- "solution-3d.gmv");
- data_out.write_gmv (output);
-};
-
-
-
- // This is the function which has the
- // top-level control over
- // everything. Apart from one line of
- // additional output, it is the same
- // as for the previous example.
-template <int dim>
-void LaplaceProblem<dim>::run ()
-{
- cout << "Solving problem in " << dim << " space dimensions." << endl;
-
- make_grid_and_dofs();
- assemble_system ();
- solve ();
- output_results ();
-};
-
-
-
- // And this is the main function. It
- // also looks mostly like in the
- // previous example:
-int main ()
-{
- // In the previous example, we had
- // the output from the linear
- // solvers about the starting
- // residual and the number of the
- // iteration where convergence was
- // detected. This can be suppressed
- // like this:
- deallog.depth_console (0);
- // The rationale here is the
- // following: the deallog
- // (i.e. deal-log, not de-allog)
- // variable represents a stream to
- // which some parts of the library
- // write output. It redirects this
- // output to the console and if
- // required to a file. The output
- // is nested in a way that each
- // function can use a prefix string
- // (separated by colons) for each
- // line of output; if it calls
- // another function, that may also
- // use its prefix which is then
- // printed after the one of the
- // calling function. Since output
- // from functions which are nested
- // deep below is usually not as
- // important as top-level output,
- // you can give the deallog
- // variable a maximal depth of
- // nested output for output to
- // console and file. The depth zero
- // which we gave here means that no
- // output is written.
-
- // After having done this
- // administrative stuff, we can go
- // on just as before: define one of
- // these top-level objects and
- // transfer control to
- // it. Actually, now is the point
- // where we have to tell the
- // compiler which dimension we
- // would like to use; all functions
- // up to now including the classes
- // were only templates and nothing
- // has been compiled by now, but by
- // declaring the following objects,
- // the compiler will start to
- // compile all the functions at the
- // top using the template parameter
- // replaced with a concrete value.
- //
- // For demonstration, we will first
- // let the whole thing run in 2D
- // and then in 3D:
- LaplaceProblem<2> laplace_problem_2d;
- laplace_problem_2d.run ();
-
- LaplaceProblem<3> laplace_problem_3d;
- laplace_problem_3d.run ();
-
- return 0;
-};
+++ /dev/null
-*.o *.go Makefile.dep *.gnuplot *.gmv *.eps
-step-5
+++ /dev/null
-# $Id$
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = $(basename $(shell echo step-*.cc))
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../../../
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g = $(lib-deal2-2d.g) \
- $(lib-lac.g) \
- $(lib-base.g)
-libs.o = $(lib-deal2-2d.o) \
- $(lib-lac.o) \
- $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
- libraries = $(target).go $(libs.g)
- flags = $(CXXFLAGS.g)
-else
- libraries = $(target).go $(libs.o)
- flags = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
- libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
- @echo ============================ Linking $@
- @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
- @echo ============================ Running $<
- @./$(target)
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
- -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
- @echo ==============debug========= $(<F)
- @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
- @echo ==============optimized===== $(<F)
- @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-(include-path-base)/baseh-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script. Since the
-# script prefixes the output names by `lib(include-path-base)/baseo' or `lib(include-path-base)/basego' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
- $(shell echo $(include-path-base)/base/*.h \
- $(include-path-lac)/lac/*.h \
- $(include-path-deal2)/*/*.h)
- @echo ============================ Remaking Makefile
- @perl $D/common/scripts/make_dependencies.pl $(INCLUDE) $(target).cc \
- | perl -pi -e 's!lib/g?o/!!g;' \
- > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
+++ /dev/null
-25 20 0 0 0
-1 -0.7071 -0.7071 0
-2 0.7071 -0.7071 0
-3 -0.2668 -0.2668 0
-4 0.2668 -0.2668 0
-5 -0.2668 0.2668 0
-6 0.2668 0.2668 0
-7 -0.7071 0.7071 0
-8 0.7071 0.7071 0
-9 0 -1 0
-10 0.5 -0.5 0
-11 0 -0.3139 0
-12 -0.5 -0.5 0
-13 0 -0.6621 0
-14 -0.3139 0 0
-15 -0.5 0.5 0
-16 -1 0 0
-17 -0.6621 0 0
-18 0.3139 0 0
-19 0 0.3139 0
-20 0 0 0
-21 1 0 0
-22 0.5 0.5 0
-23 0.6621 0 0
-24 0 1 0
-25 0 0.6621 0
-1 0 quad 1 9 13 12
-2 0 quad 9 2 10 13
-3 0 quad 13 10 4 11
-4 0 quad 12 13 11 3
-5 0 quad 1 12 17 16
-6 0 quad 12 3 14 17
-7 0 quad 17 14 5 15
-8 0 quad 16 17 15 7
-9 0 quad 3 11 20 14
-10 0 quad 11 4 18 20
-11 0 quad 20 18 6 19
-12 0 quad 14 20 19 5
-13 0 quad 2 21 23 10
-14 0 quad 21 8 22 23
-15 0 quad 23 22 6 18
-16 0 quad 10 23 18 4
-17 0 quad 7 15 25 24
-18 0 quad 15 5 19 25
-19 0 quad 25 19 6 22
-20 0 quad 24 25 22 8
+++ /dev/null
-/* $Id$ */
-/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */
-
- // Again, the first few include files
- // are already known, so we won't
- // comment on them:
-#include <base/quadrature_lib.h>
-#include <base/function.h>
-#include <base/logstream.h>
-#include <lac/vector.h>
-#include <lac/full_matrix.h>
-#include <lac/sparse_matrix.h>
-#include <lac/solver_cg.h>
-#include <lac/vector_memory.h>
-#include <lac/precondition.h>
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <dofs/dof_accessor.h>
-#include <dofs/dof_tools.h>
-#include <fe/fe_lib.lagrange.h>
-#include <fe/fe_values.h>
-#include <numerics/vectors.h>
-#include <numerics/matrices.h>
-#include <numerics/data_out.h>
-
- // This one is new. We want to read a
- // triangulation from disk, and the
- // class which does this is declared
- // in the following file:
-#include <grid/grid_in.h>
-
- // We will use a circular domain, and
- // the object describing the boundary
- // of it comes from this file:
-#include <grid/tria_boundary_lib.h>
-
- // This is C++ ...
-#include <fstream>
- // ... and this is too. We will
- // convert integers to strings using
- // the classes inside this file:
-#include <strstream>
-
-
-
- // The main class is mostly as in the
- // previous example. The most visible
- // change is that the function
- // ``make_grid_and_dofs'' has been
- // removed, since making of the grid
- // is now done in the ``run''
- // function and the rest of its
- // functionality now is in
- // ``setup_system''. Apart from this,
- // everything is as before.
-template <int dim>
-class LaplaceProblem
-{
- public:
- LaplaceProblem ();
- void run ();
-
- private:
- void setup_system ();
- void assemble_system ();
- void solve ();
- void output_results (const unsigned int cycle) const;
-
- Triangulation<dim> triangulation;
- FEQ1<dim> fe;
- DoFHandler<dim> dof_handler;
-
- SparsityPattern sparsity_pattern;
- SparseMatrix<double> system_matrix;
-
- Vector<double> solution;
- Vector<double> system_rhs;
-};
-
-
-
- // In this example, we want to use a
- // variable coefficient in the
- // elliptic operator. Of course, the
- // suitable object is a Function, as
- // we have used it for the right hand
- // side and boundary values in the
- // last example. We will use it
- // again, but we implement another
- // function ``value_list'' which
- // takes a list of points and returns
- // the values of the function at
- // these points as a list. The reason
- // why such a function is reasonable
- // although we can get all the
- // information from the ``value''
- // function as well will be explained
- // below when assembling the matrix.
-template <int dim>
-class Coefficient : public Function<dim>
-{
- public:
- virtual double value (const Point<dim> &p,
- const unsigned int component = 0) const;
-
- virtual void value_list (const vector<Point<dim> > &points,
- vector<double> &values,
- const unsigned int component = 0) const;
-};
-
-
-
- // This is the implementation of the
- // coefficient function for a single
- // point. We let it return 20 if the
- // distance to the point of origin is
- // less than 0.5, and 1 otherwise:
-template <int dim>
-double Coefficient<dim>::value (const Point<dim> &p,
- const unsigned int) const
-{
- if (p.square() < 0.5*0.5)
- return 20;
- else
- return 1;
-};
-
-
-
- // And this is the function that
- // returns the value of the
- // coefficient at a whole list of
- // points at once. Of course, the
- // values are the same as if we would
- // ask the ``value'' function.
-template <int dim>
-void Coefficient<dim>::value_list (const vector<Point<dim> > &points,
- vector<double> &values,
- const unsigned int component) const
-{
- // Use n_q_points as an
- // abbreviation for the number of
- // points for which function values
- // are requested:
- const unsigned int n_points = points.size();
-
- // Now, of course the size of the
- // output array (``values'') must
- // be the same as that of the input
- // array (``points''), and we could
- // simply assume that. However, in
- // practice more than 90 per cent
- // of programming errors are
- // invalid function parameters such
- // as invalid array sizes, etc, so
- // we should try to make sure that
- // the parameters are valid. For
- // this, the Assert macro is a good
- // means, since it asserts that the
- // condition which is given as
- // first argument is valid, and if
- // not throws an exception (its
- // second argument) which will
- // usually terminate the program
- // giving information where the
- // error occured and what the
- // reason was. This generally
- // reduces the time to find
- // programming errors dramatically
- // and we have found assertions an
- // invaluable means to program
- // fast.
- //
- // On the other hand, all these
- // checks (there are more than 2000
- // of them in the library) should
- // not slow down the program too
- // much, which is why the Assert
- // macro is only used in debug mode
- // and expands to nothing if in
- // optimized mode. Therefore, while
- // you test your program and debug
- // it, the assertions will tell you
- // where the problems are, and once
- // your program is stable you can
- // switch off debugging and the
- // program will run without the
- // assertions and at maximum speed.
- //
- // Here, as has been said above, we
- // would like to make sure that the
- // size of the two arrays is equal,
- // and if not throw an
- // exception. Since the following
- // test is rather frequent for the
- // classes derived from
- // ``Function'', that class
- // declares an exception
- // ``ExcVectorHasWrongSize'' which
- // takes the sizes of two vectors
- // and prints some output in case
- // the condition is violated:
- Assert (values.size() == n_points,
- ExcVectorHasWrongSize (values.size(), n_points));
- // Since examples are not very good
- // if they do not demonstrate their
- // point, we will show how to
- // trigger this exception at the
- // end of the main program, and
- // what output results from this
- // (see the ``Results'' section of
- // this example program). You will
- // certainly notice that the output
- // is quite well suited to quickly
- // find what the problem is and
- // what parameters are expected. An
- // additional plus is that if the
- // program is run inside a
- // debugger, it will stop at the
- // point where the exception is
- // triggered, so you can go up the
- // call stack to immediately find
- // the place where the the array
- // with the wrong size was set up.
-
- // While we're at it, we can do
- // another check: the coefficient
- // is a scalar, but the Function
- // class also represents
- // vector-valued function. A scalar
- // function must therefore be
- // considered as a vector-valued
- // function with only one
- // component, so the only valid
- // component for which a user might
- // ask is zero (we always count
- // from zero). The following
- // assertion checks this. (The
- // ``1'' is denotes the number of
- // components that this function
- // has.)
- Assert (component == 0,
- ExcWrongComponent (component, 1));
-
- for (unsigned int i=0; i<n_points; ++i)
- {
- if (points[i].square() < 0.5*0.5)
- values[i] = 20;
- else
- values[i] = 1;
- };
-};
-
-
- // This function is as before.
-template <int dim>
-LaplaceProblem<dim>::LaplaceProblem () :
- dof_handler (triangulation)
-{};
-
-
-
- // This is the function
- // ``make_grid_and_dofs'' from the
- // previous example, minus the
- // generation of the grid. Everything
- // else is unchanged.
-template <int dim>
-void LaplaceProblem<dim>::setup_system ()
-{
- dof_handler.distribute_dofs (fe);
-
- cout << " Number of degrees of freedom: "
- << dof_handler.n_dofs()
- << endl;
-
- sparsity_pattern.reinit (dof_handler.n_dofs(),
- dof_handler.n_dofs(),
- dof_handler.max_couplings_between_dofs());
- DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
- sparsity_pattern.compress();
-
- system_matrix.reinit (sparsity_pattern);
-
- solution.reinit (dof_handler.n_dofs());
- system_rhs.reinit (dof_handler.n_dofs());
-};
-
-
-
- // As in the previous examples, this
- // function is not changed much with
- // regard to its functionality, but
- // there are still some optimizations
- // which we will show. For this, it
- // is important to note that if
- // efficient solvers are used (such
- // as the preconditions CG method),
- // assembling the matrix and right
- // hand side can take a comparable
- // time, and it is worth the effort
- // to use one or two optimizations at
- // some places.
- //
- // What we will show here is how we
- // can avoid calls to the
- // shape_value, shape_grad, and
- // quadrature_point functions of the
- // FEValues object, and in particular
- // optimize away most of the virtual
- // function calls of the Function
- // object. The way to do so will be
- // explained in the following, while
- // those parts of this function that
- // are not changed with respect to
- // the previous example are not
- // commented on.
-template <int dim>
-void LaplaceProblem<dim>::assemble_system ()
-{
- // This time, we will again use a
- // constant right hand side
- // function, but a variable
- // coefficient. The following
- // object will be used for this:
- const Coefficient<dim> coefficient;
-
- QGauss2<dim> quadrature_formula;
-
- FEValues<dim> fe_values (fe, quadrature_formula,
- UpdateFlags(update_values |
- update_gradients |
- update_q_points |
- update_JxW_values));
-
- const unsigned int dofs_per_cell = fe.dofs_per_cell;
- const unsigned int n_q_points = quadrature_formula.n_quadrature_points;
-
- FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);
- Vector<double> cell_rhs (dofs_per_cell);
-
- vector<unsigned int> local_dof_indices (dofs_per_cell);
-
- // Below, we will ask the
- // Coefficient class to compute the
- // values of the coefficient at all
- // quadrature points on one cell at
- // once. For this, we need some
- // space to store the values in,
- // which we use the following
- // variable for:
- vector<double> coefficient_values (n_q_points);
-
- DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(),
- endc = dof_handler.end();
- for (; cell!=endc; ++cell)
- {
- cell_matrix.clear ();
- cell_rhs.clear ();
-
- // As before, we want the
- // FEValues object to compute
- // the quantities which we told
- // him to compute in the
- // constructor using the update
- // flags.
- fe_values.reinit (cell);
- // Now, these quantities are
- // stored in arrays in the
- // FEValues object. Usually,
- // the internals of how and
- // where they are stored is not
- // something that the outside
- // world should know, but since
- // this is a time critical
- // function we decided to
- // publicize these arrays a
- // little bit, and provide
- // facilities to export the
- // address where this data is
- // stored.
- //
- // For example, the values of
- // shape function j at
- // quadrature point q is stored
- // in a matrix, of which we can
- // get the address as follows
- // (note that this is a
- // reference to the matrix,
- // symbolized by the ampersand,
- // and that it must be a
- // constant reference, since
- // only read-only access is
- // granted):
- const FullMatrix<double>
- & shape_values = fe_values.get_shape_values();
- // Instead of writing
- // fe_values.shape_value(j,q)
- // we can now write
- // shape_values(j,q), i.e. the
- // function call needed
- // previously for each access
- // has been otimized away.
- //
- // There are alike functions
- // for almost all data elements
- // in the FEValues class. The
- // gradient are accessed as
- // follows:
- const vector<vector<Tensor<1,dim> > >
- & shape_grads = fe_values.get_shape_grads();
- // The data type looks a bit
- // unwieldy, since each entry
- // in the matrix (j,q) now
- // needs to be the gradient of
- // the shape function, which is
- // a vector.
- //
- // Similarly, access to the
- // place where quadrature
- // points and the determinants
- // of the Jacobian matrices
- // times the weights of the
- // respective quadrature points
- // are stored, can be obtained
- // like this:
- const vector<double>
- & JxW_values = fe_values.get_JxW_values();
- const vector<Point<dim> >
- & q_points = fe_values.get_quadrature_points();
- // Admittedly, the declarations
- // above are not easily
- // readable, but they can save
- // many function calls in the
- // inner loops and can thus
- // make assemblage faster.
- //
- // An additional advantage is
- // that the inner loops are
- // simpler to read, since the
- // fe_values object is no more
- // explicitely needed to access
- // the different fields (see
- // below). Unfortunately,
- // things became a bit
- // inconsistent, since the
- // shape values are accessed
- // via the FullMatrix operator
- // (), i.e. using parentheses,
- // while all the other fields
- // are accessed through vector
- // operator [], i.e. using
- // brackets. This is due to
- // historical reasons and
- // frequently leads to a bit of
- // confusion, but since the
- // places where this happens
- // are few in well-written
- // programs, this is not too
- // big a problem.
-
- // There is one more thing: in
- // this example, we want to use
- // a non-constant
- // coefficient. In the previous
- // example, we have called the
- // ``value'' function of the
- // right hand side object for
- // each quadrature
- // point. Unfortunately, that
- // is a virtual function, so
- // calling it is relatively
- // expensive. Therefore, we use
- // a function of the Function
- // class which returns the
- // values at all quadrature
- // points at once; that
- // function is still virtual,
- // but it needs to be computed
- // once per cell only, not once
- // in the inner loop:
- coefficient.value_list (q_points, coefficient_values);
- // It should be noted that the
- // creation of the
- // coefficient_values object is
- // done outside the loop over
- // all cells to avoid memory
- // allocation each time we
- // visit a new cell. Contrary
- // to this, the other variables
- // above were created inside
- // the loop, but they were only
- // references to memory that
- // has already been allocated
- // (i.e. they are pointers to
- // that memory) and therefore,
- // no new memory needs to be
- // allocated; in particular, by
- // declaring the pointers as
- // close to their use as
- // possible, we give the
- // compiler a better choice to
- // optimize them away
- // altogether, something which
- // it definitely can't do with
- // the coefficient_values
- // object since it is too
- // complicated, but mostly
- // because it's address is
- // passed to a virtual function
- // which is not knows at
- // compile time.
-
- // Using the various
- // abbreviations, the loops
- // then look like this (the
- // parentheses around the
- // product of the two gradients
- // are needed to indicate the
- // dot product; we have to
- // overrule associativity of
- // the operator* here, since
- // the compiler would otherwise
- // complain about an undefined
- // product of double*gradient
- // since it parses
- // left-to-right):
- for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- {
- for (unsigned int j=0; j<dofs_per_cell; ++j)
- cell_matrix(i,j) += (coefficient_values[q_point] *
- (shape_grads[i][q_point] *
- shape_grads[j][q_point]) *
- JxW_values[q_point]);
-
- // For the right hand
- // side, a constant value
- // is used again:
- cell_rhs(i) += (shape_values (i,q_point) *
- 1.0 *
- fe_values.JxW (q_point));
- };
-
-
- cell->get_dof_indices (local_dof_indices);
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- {
- for (unsigned int j=0; j<dofs_per_cell; ++j)
- system_matrix.add (local_dof_indices[i],
- local_dof_indices[j],
- cell_matrix(i,j));
-
- system_rhs(local_dof_indices[i]) += cell_rhs(i);
- };
- };
-
- // Again use zero boundary values:
- map<unsigned int,double> boundary_values;
- VectorTools::interpolate_boundary_values (dof_handler,
- 0,
- ZeroFunction<dim>(),
- boundary_values);
- MatrixTools<dim>::apply_boundary_values (boundary_values,
- system_matrix,
- solution,
- system_rhs);
-};
-
-
-
- // The solution process again looks
- // mostly like in the previous
- // examples. However, we will now use
- // a preconditioned conjugate
- // gradient algorithm. It is not very
- // difficult to make this change:
-template <int dim>
-void LaplaceProblem<dim>::solve ()
-{
- SolverControl solver_control (1000, 1e-12);
- PrimitiveVectorMemory<> vector_memory;
- SolverCG<> cg (solver_control, vector_memory);
-
- // The only thing we have to alter
- // is that we need an object which
- // will act as a preconditioner. We
- // will use SSOR (symmetric
- // successive overrelaxation), with
- // a relaxation factor of 1.2. For
- // this purpose, the SparseMatrix
- // class has a function which does
- // one SSOR step, and we need to
- // package the address of this
- // function together with the
- // matrix on which it should act
- // (which is the matrix to be
- // inverted) and the relaxation
- // factor into one object. This can
- // be done like this:
- PreconditionRelaxation<>
- preconditioner(system_matrix,
- &SparseMatrix<double>::template precondition_SSOR<double>,
- 1.2);
- // The default template parameters
- // of the PreconditionRelaxation
- // class are the matrix and the
- // vector type, which default to
- // the types used in this program.
-
- // Calling the solver now looks
- // mostly like in the example
- // before, but where there was an
- // object of type
- // PreconditionIdentity before,
- // there now is the newly generated
- // preconditioner object.
- cg.solve (system_matrix, solution, system_rhs,
- preconditioner);
-
- cout << " " << solver_control.last_step()
- << " CG iterations needed to obtain convergence."
- << endl;
-};
-
-
-
- // Writing output to a file is mostly
- // the same as for the previous
- // example, but here we will show how
- // to modify some output options and
- // how to construct a different
- // filename for each refinement
- // cycle.
-template <int dim>
-void LaplaceProblem<dim>::output_results (const unsigned int cycle) const
-{
- DataOut<dim> data_out;
-
- data_out.attach_dof_handler (dof_handler);
- data_out.add_data_vector (solution, "solution");
-
- data_out.build_patches ();
-
- // For this example, we would like
- // to write the output directly to
- // a file in Encapsulated
- // Postscript (EPS) format. The
- // library supports this, but
- // things may be a bit more
- // difficult sometimes, since EPS
- // is a printing format, unlike
- // most other supported formats
- // which serve as input for
- // graphical tools. Therefore, you
- // can't scale or rotate the image
- // after it has been written to
- // disk, and you have to decide
- // about the viewpoint or the
- // scaling in advance.
- //
- // The defaults in the library are
- // usually quite reasonable, and
- // regarding viewpoint and scaling
- // they coincide with the defaults
- // of Gnuplot. However, since this
- // is a tutorial, we will
- // demonstrate how to change
- // them. For this, we first have to
- // generate an object describing
- // the flags for EPS output:
- DataOutBase::EpsFlags eps_flags;
- // They are initialized with the
- // default values, so we only have
- // to change those that we don't
- // like. For example, we would like
- // to scale the z-axis differently
- // (stretch each data point in
- // z-direction by a factor of four):
- eps_flags.z_scaling = 4;
- // Then we would also like to alter
- // the viewpoint from which we look
- // at the solution surface. The
- // default is at an angle of 60
- // degrees down from the vertical
- // axis, and 30 degrees rotated
- // against it in mathematical
- // positive sense. We raise our
- // viewpoint a bit and look more
- // along the y-axis:
- eps_flags.azimut_angle = 40;
- eps_flags.turn_angle = 10;
- // That shall suffice. There are
- // more flags, for example whether
- // to draw the mesh lines, which
- // data vectors to use for
- // colorization of the interior of
- // the cells, and so on. You may
- // want to take a look at the
- // documentation of the EpsFlags
- // structure to get an overview of
- // what is possible.
- //
- // The only thing still to be done,
- // is to tell the output object to
- // use these flags:
- data_out.set_flags (eps_flags);
- // The above way to modify flags
- // requires recompilation each time
- // we would like to use different
- // flags. This is inconvenient, and
- // we will see more advanced ways
- // in following examples where the
- // output flags are determined at
- // run time using an input file.
-
- // Finally, we need the filename to
- // which the results is to be
- // written. We would like to have
- // it of the form
- // ``solution-N.eps'', where N is
- // the number of refinement
- // cycle. Thus, we have to convert
- // an integer to a part of a
- // string; this can be done using
- // the ``sprintf'' function, but in
- // C++ there is a more elegant way:
- // write everything into a special
- // stream (just like writing into a
- // file or to the screen) and
- // retrieve that as a string. This
- // applies the usual conversions
- // from integer to strings, and one
- // could as well give stream
- // modifiers such as ``setf'',
- // ``setprecision'', and so on.
- ostrstream filename;
- filename << "solution-"
- << cycle
- << ".eps";
- // In order to append the final
- // '\0', we have to put an ``ends''
- // to the end of the string:
- filename << ends;
-
- // We can get whatever we wrote to
- // the stream using the ``str()''
- // function. Use that as filename
- // for the output stream:
- ofstream output (filename.str());
- // And then write the data to the
- // file.
- data_out.write_eps (output);
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::run ()
-{
- for (unsigned int cycle=0; cycle<6; ++cycle)
- {
- cout << "Cycle " << cycle << ':' << endl;
-
- // If this is the first round,
- // then we have no grid yet,
- // and we will create it
- // here. In previous examples,
- // we have already used some of
- // the functions from the
- // GridGenerator class. Here we
- // would like to read a grid
- // from a file where the cells
- // are stored and which may
- // originate from someone else,
- // or may be the product of a
- // mesh generator tool.
- //
- // In order to read a grid from
- // a file, we generate an
- // object of data type GridIn
- // and associate the
- // triangulation to it (i.e. we
- // tell it to fill our
- // triangulation object when we
- // ask it to read the
- // file). Then we open the
- // respective file and fill the
- // triangulation with it:
- if (cycle == 0)
- {
- GridIn<dim> grid_in;
- grid_in.attach_triangulation (triangulation);
-
- // We would now like to
- // read the file. However,
- // the input file is only
- // for a two-dimensional
- // triangulation, while
- // this function is a
- // template for arbitrary
- // dimension. Since this is
- // only a demonstration
- // program, we will not use
- // different input files
- // for the different
- // dimensions, but rather
- // kill the whole program
- // if we are not in 2D:
- Assert (dim==2, ExcInternalError());
- // ExcInternalError is a
- // globally defined
- // exception, which may be
- // thrown whenever
- // something is terribly
- // wrong. Usually, one
- // would like to use more
- // specific exceptions, and
- // particular in this case
- // one would of course try
- // to do something else if
- // ``dim'' is not equal to
- // two, e.g. create a grid
- // using library
- // functions. Aborting a
- // program is usually not a
- // good idea and assertions
- // should really only be
- // used for exceptional
- // cases which should not
- // occur, but might due to
- // stupidity of the
- // programmer, user, or
- // someone else. The
- // situation above is not a
- // very clever use of
- // Assert, but again: this
- // is a tutorial and it
- // might be worth to show
- // what not to do, after
- // all.
-
- // We can now actually read
- // the grid. It is in UCD
- // (unstructured cell data)
- // format, as supported by
- // AVS Explorer, for
- // example:
- ifstream input_file("circle-grid.inp");
- grid_in.read_ucd (input_file);
-
- // The grid in the file
- // describes a
- // circle. Therefore we
- // have to use a boundary
- // object which tells the
- // triangulation where to
- // put new points on the
- // boundary when the grid
- // is refined. This works
- // in the same way as in
- // the first example. Note
- // that the
- // HyperBallBoundary
- // constructor takes two
- // parameters, the center
- // of the ball and the
- // radius, but that their
- // default (the origin and
- // 1.0) are the ones which
- // we would like to use
- // here.
- static const HyperBallBoundary<dim> boundary;
- triangulation.set_boundary (0, boundary);
- }
- // If this is not the first
- // cycle, then simply refine
- // the grid once globally.
- else
- triangulation.refine_global (1);
-
- // Write some output and do all
- // the things that we have
- // already seen in the previous
- // examples.
- cout << " Number of active cells: "
- << triangulation.n_active_cells()
- << endl
- << " Total number of cells: "
- << triangulation.n_cells()
- << endl;
-
- setup_system ();
- assemble_system ();
- solve ();
- output_results (cycle);
- };
-};
-
-
-
- // The main function looks mostly
- // like the one in the previous
- // example, so we won't comment on it
- // further.
-int main ()
-{
- deallog.depth_console (0);
-
- LaplaceProblem<2> laplace_problem_2d;
- laplace_problem_2d.run ();
-
- // Finally, we have promised to
- // trigger an exception in the
- // Coefficient class. For this, we
- // have to call its ``value_list''
- // function with two arrays of
- // different size (the number in
- // parentheses behind the name of
- // the object). We have commented
- // out these lines in order to
- // allow the program to exit
- // gracefully in normal situations
- // (we use the program in
- // day-to-day testing of changes to
- // the library as well), so you
- // will only get the exception by
- // un-commenting the following
- // lines.
-/*
- Coefficient<2> coefficient;
- vector<Point<2> > points (2);
- vector<double> coefficient_values (1);
- coefficient.value_list (points, coefficient_values);
-*/
-
- return 0;
-};
+++ /dev/null
-*.o *.go Makefile.dep *.gnuplot *.gmv *.eps
-step-6
+++ /dev/null
-# $Id$
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = $(basename $(shell echo step-*.cc))
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../../../
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g = $(lib-deal2-2d.g) \
- $(lib-lac.g) \
- $(lib-base.g)
-libs.o = $(lib-deal2-2d.o) \
- $(lib-lac.o) \
- $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
- libraries = $(target).go $(libs.g)
- flags = $(CXXFLAGS.g)
-else
- libraries = $(target).go $(libs.o)
- flags = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
- libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
- @echo ============================ Linking $@
- @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
- @echo ============================ Running $<
- @./$(target)
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
- -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
- @echo ==============debug========= $(<F)
- @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
- @echo ==============optimized===== $(<F)
- @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-(include-path-base)/baseh-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script. Since the
-# script prefixes the output names by `lib(include-path-base)/baseo' or `lib(include-path-base)/basego' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
- $(shell echo $(include-path-base)/base/*.h \
- $(include-path-lac)/lac/*.h \
- $(include-path-deal2)/*/*.h)
- @echo ============================ Remaking Makefile
- @perl $D/common/scripts/make_dependencies.pl $(INCLUDE) $(target).cc \
- | perl -pi -e 's!lib/g?o/!!g;' \
- > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
+++ /dev/null
-/* $Id$ */
-/* Author: Wolfgang Bangerth, University of Heidelberg, 2000 */
-
- // The first few files have already
- // been covered in previous examples
- // and will thus not be further
- // commented on.
-#include <base/quadrature_lib.h>
-#include <base/function.h>
-#include <base/logstream.h>
-#include <lac/vector.h>
-#include <lac/full_matrix.h>
-#include <lac/sparse_matrix.h>
-#include <lac/solver_cg.h>
-#include <lac/vector_memory.h>
-#include <lac/precondition.h>
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
-#include <grid/grid_generator.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria_boundary_lib.h>
-#include <dofs/dof_accessor.h>
-#include <dofs/dof_tools.h>
-#include <fe/fe_values.h>
-#include <numerics/vectors.h>
-#include <numerics/matrices.h>
-#include <numerics/data_out.h>
- // From the following include file we
- // will import the declaration of the
- // quadratic finite element class,
- // which in analogy to ``FEQ1'' for
- // the linear element is called
- // ``FEQ2''. The Lagrange elements of
- // poynomial degrees one through four
- // are all declared in this file.
-#include <fe/fe_lib.lagrange.h>
-
- // We will not read the grid from a
- // file as in the previous example,
- // but generate it using a function
- // of the library. However, we will
- // want to write out the locally
- // refined grids in each step, so we
- // need the following include file
- // instead of ``grid_in.h'':
-#include <grid/grid_out.h>
-
- // When using locally refined grids,
- // we will get so-called ``hanging
- // nodes''. However, the standard
- // finite element methods assumes
- // that the discrete solution spaces
- // be continuous, so we need to make
- // sure that the degrees of freedom
- // on hanging nodes conform to some
- // constraints such that the global
- // solution is continuous. The
- // following file contains a class
- // which is used to handle these
- // constraints:
-#include <dofs/dof_constraints.h>
-
- // Finally, we would like to use a
- // simple way to adaptively refine
- // the grid. While in general,
- // adaptivity is very
- // problem-specific, the error
- // indicator in the following file
- // often yields quite nicely adapted
- // grids for a wide class of
- // problems.
-#include <numerics/error_estimator.h>
-
-#include <fstream>
-
-
- // The main class is again almost
- // unchanged. Two additions, however,
- // are made: we have added the
- // ``refine'' function, which is used
- // to adaptively refine the grid
- // (instead of the global refinement
- // in the previous examples), and a
- // variable which will hold the
- // constraints associated to the
- // hanging nodes.
-template <int dim>
-class LaplaceProblem
-{
- public:
- LaplaceProblem ();
- // For educational purposes, we
- // add a destructor here. The
- // reason why we do so will be
- // explained in the definition of
- // this function.
- ~LaplaceProblem ();
- void run ();
-
- private:
- void setup_system ();
- void assemble_system ();
- void solve ();
- void refine_grid ();
- void output_results (const unsigned int cycle) const;
-
- Triangulation<dim> triangulation;
- DoFHandler<dim> dof_handler;
-
- // In order to use the quadratic
- // element, we only have to
- // replace the declaration of the
- // ``fe'' variable like this:
- FEQ2<dim> fe;
-
- // This is the new variable in
- // the main class. We need an
- // object which holds a list of
- // the constraints from the
- // hanging nodes:
- ConstraintMatrix hanging_node_constraints;
-
- SparsityPattern sparsity_pattern;
- SparseMatrix<double> system_matrix;
-
- Vector<double> solution;
- Vector<double> system_rhs;
-};
-
-
-
-template <int dim>
-class Coefficient : public Function<dim>
-{
- public:
- virtual double value (const Point<dim> &p,
- const unsigned int component = 0) const;
-
- virtual void value_list (const vector<Point<dim> > &points,
- vector<double> &values,
- const unsigned int component = 0) const;
-};
-
-
-
-template <int dim>
-double Coefficient<dim>::value (const Point<dim> &p,
- const unsigned int) const
-{
- if (p.square() < 0.5*0.5)
- return 20;
- else
- return 1;
-};
-
-
-
-template <int dim>
-void Coefficient<dim>::value_list (const vector<Point<dim> > &points,
- vector<double> &values,
- const unsigned int component) const
-{
- const unsigned int n_points = points.size();
-
- Assert (values.size() == n_points,
- ExcVectorHasWrongSize (values.size(), n_points));
-
- Assert (component == 0,
- ExcWrongComponent (component, 1));
-
- for (unsigned int i=0; i<n_points; ++i)
- {
- if (points[i].square() < 0.5*0.5)
- values[i] = 20;
- else
- values[i] = 1;
- };
-};
-
-
-template <int dim>
-LaplaceProblem<dim>::LaplaceProblem () :
- dof_handler (triangulation)
-{};
-
-
- // Here comes the added destructor of
- // the class. The reason why we
- // needed to do so is a subtle change
- // in the order of data elements in
- // the class as compared to all
- // previous examples: the
- // ``dof_handler'' object was defined
- // before and not after the ``fe''
- // object. Of course we could have
- // left this order unchanged, but we
- // would like to show what happens if
- // the order is reversed since this
- // produces a rather nasty effect and
- // results in an error which is
- // difficult to track down if one
- // does not know what happens.
- //
- // Basically what happens is the
- // following: when we distribute the
- // degrees of freedom using the
- // function call
- // ``dof_handler.distribute_dofs()'',
- // the ``dof_handler'' also stores a
- // pointer to the finite element in
- // use. Since this pointer is used
- // every now and then until either
- // the degrees of freedom are
- // re-distributed using another
- // finite element object or until the
- // ``dof_handler'' object is
- // detroyed, it would be unwise if we
- // would allow the finite element
- // object to be deleted before
- // ``dof_handler'' object. To
- // disallow this, the DoF handler
- // increases a counter inside the
- // finite element object which counts
- // how many objects use that finite
- // element (this is what the
- // ``Subscriptor'' class is used for,
- // in case you want something like
- // this for your own programs). The
- // finite element object will refuse
- // its destruction if that counter is
- // larger than zero, since then some
- // other objects might rely on the
- // persistence of the finite element
- // object. An exception will then be
- // thrown and the program will
- // usually abort upon the attempt to
- // destroy the finite element.
- //
- // As a sidenote, we remark that
- // these exception are not
- // particularly popular among
- // programmers, since they only tell
- // us that some other object is still
- // using the object that is presently
- // destructed, but not which one. It
- // is therefore often rather
- // time-consuming to find out where
- // the problem exactly is, although
- // it is then usually straightforward
- // to remedy the situation. However,
- // we believe that the effort to find
- // invalid references to objects that
- // do no longer exist is less if the
- // problem is detected once the
- // reference becomes invalid, rather
- // than when non-existent objects are
- // actually accessed again, since
- // then usually only invalid data is
- // accessed, but no error is
- // immediately raised.
- //
- // Coming back to the present
- // situation, if we did not write
- // this destructor, the compiler will
- // generate code that triggers
- // exactly the behavious sketched
- // above. The reason is that member
- // variables of the
- // ``LaplaceProblem'' class are
- // destructed bottom-up, as always in
- // C++. Thus, the finite element
- // object will be destructed before
- // the DoF handler object, since its
- // declaration is below the one of
- // the DoF handler. This triggers the
- // situation above, and an exception
- // will be raised when the ``fe''
- // object is destructed. What needs
- // to be done is to tell the
- // ``dof_handler'' object to release
- // its lock to the finite element. Of
- // course, the ``dof_handler'' will
- // only release its lock if it really
- // does not need the finite element
- // any more, i.e. when all finite
- // element related data is deleted
- // from it. For this purpose, the
- // ``DoFHandler'' class has a
- // function ``clear'' which deletes
- // all degrees of freedom, releases
- // its lock to the finite element and
- // sets its internal pointer to a
- // null pointer. After this, you can
- // safely destruct the finite element
- // object since its internal counter
- // is then zero.
- //
- // For completeness, we add the
- // output of the exception that would
- // be triggered without this
- // destructor to the end of the
- // results section of this example.
-template <int dim>
-LaplaceProblem<dim>::~LaplaceProblem ()
-{
- dof_handler.clear ();
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::setup_system ()
-{
- // To distribute degrees of
- // freedom, the ``dof_handler''
- // variable takes only the finite
- // element object. In this case, it
- // will distribute one degree of
- // freedom per vertex, one per line
- // and one in the interior of the
- // cell. You need not specify these
- // details since they are encoded
- // into the finite element object
- // from which the ``dof_handler''
- // gets the necessary information.
- dof_handler.distribute_dofs (fe);
-
- // After setting up all the degrees
- // of freedoms, we can make up the
- // list of constraints associated
- // with the hanging nodes. This is
- // done using the following
- // function calls (the first clears
- // the contents of the object,
- // which is still there from the
- // previous cycle, i.e. before the
- // grid was refined):
- hanging_node_constraints.clear ();
- DoFTools::make_hanging_node_constraints (dof_handler,
- hanging_node_constraints);
- // In principle, the
- // ConstraintMatrix class can hold
- // other constraints as well,
- // i.e. constraints that do not
- // stem from hanging
- // nodes. Sometimes, it is useful
- // to use such constraints, in
- // which case they may be added to
- // the ConstraintMatrix object
- // after the hanging node
- // constraints were computed. After
- // all constraints have been added,
- // they need to be sorted and
- // rearranged to perform some
- // actions more efficiently. This
- // postprocessing is done using the
- // ``close'' function, after which
- // no further constraints may be
- // added any more.
- hanging_node_constraints.close ();
-
- // Since we use higher order finite
- // elements, the maximum number of
- // entries per line of the matrix
- // is larger than for the linear
- // elements. The
- // ``max_couplings_between_dofs()''
- // function takes care of this:
- sparsity_pattern.reinit (dof_handler.n_dofs(),
- dof_handler.n_dofs(),
- dof_handler.max_couplings_between_dofs());
- DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-
- // The constrained hanging nodes
- // will later be eliminated from
- // the linear system of
- // equations. When doing so, some
- // additional entries in the global
- // matrix will be set to non-zero
- // values, so we have to reserve
- // some space for them here. Since
- // the process of elimination of
- // these constrained nodes is
- // called ``condensation'', the
- // functions that eliminate them
- // are called ``condense'' for both
- // the system matrix and right hand
- // side, as well as for teh
- // sparsity pattern.
- hanging_node_constraints.condense (sparsity_pattern);
-
- // Now all non-zero entries of the
- // matrix are known (i.e. those
- // from regularly assembling the
- // matrix and those that were
- // introduced by eliminating
- // constraints). We can thus close
- // the sparsity pattern and remove
- // unneeded space:
- sparsity_pattern.compress();
-
- system_matrix.reinit (sparsity_pattern);
-
- solution.reinit (dof_handler.n_dofs());
- system_rhs.reinit (dof_handler.n_dofs());
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::assemble_system ()
-{
- const Coefficient<dim> coefficient;
- // Since we use a higher order
- // finite element, we also need to
- // adjust the order of the
- // quadrature formula in order to
- // integrate the matrix entries
- // with sufficient accuracy. For
- // the quadratic polynomials of
- // which the finite element which
- // we use consist, a Gauss formula
- // with three points in each
- // direction is sufficient.
- QGauss3<dim> quadrature_formula;
-
- // The ``FEValues'' object
- // automatically adjusts the
- // computation of values to the
- // finite element. In fact, the
- // ``FEValues'' class does not do
- // many computations itself, but
- // mostly delegates its work to the
- // finite element class to which
- // its first parameter
- // belongs. That class then knows
- // how to compute the values of
- // shape functions, etc.
- FEValues<dim> fe_values (fe, quadrature_formula,
- UpdateFlags(update_values |
- update_gradients |
- update_q_points |
- update_JxW_values));
-
- // Here it comes handy that we have
- // introduced an abbreviation for
- // the number of degrees of freedom
- // per cell before: the following
- // value will be set to 9 (in 2D)
- // now, where it was 4 before.
- const unsigned int dofs_per_cell = fe.dofs_per_cell;
- const unsigned int n_q_points = quadrature_formula.n_quadrature_points;
-
- FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);
- Vector<double> cell_rhs (dofs_per_cell);
-
- vector<unsigned int> local_dof_indices (dofs_per_cell);
-
- vector<double> coefficient_values (n_q_points);
-
- // We can now go on with assembling
- // the matrix and right hand
- // side. Note that this code is
- // copied without change from the
- // previous example, even though we
- // are now using another finite
- // element. The actual difference
- // in what is done is inside the
- // call to ``fe_values.reinit
- // (cell)'', but you need not care
- // about what happens there. For
- // the user of the ``fe_values''
- // object, the actual finite
- // element type is transparent.
- DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(),
- endc = dof_handler.end();
- for (; cell!=endc; ++cell)
- {
- cell_matrix.clear ();
- cell_rhs.clear ();
-
- fe_values.reinit (cell);
- const FullMatrix<double>
- & shape_values = fe_values.get_shape_values();
- const vector<vector<Tensor<1,dim> > >
- & shape_grads = fe_values.get_shape_grads();
- const vector<double>
- & JxW_values = fe_values.get_JxW_values();
- const vector<Point<dim> >
- & q_points = fe_values.get_quadrature_points();
-
- coefficient.value_list (q_points, coefficient_values);
-
- for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- {
- for (unsigned int j=0; j<dofs_per_cell; ++j)
- cell_matrix(i,j) += (coefficient_values[q_point] *
- (shape_grads[i][q_point] *
- shape_grads[j][q_point]) *
- JxW_values[q_point]);
-
- cell_rhs(i) += (shape_values (i,q_point) *
- 1.0 *
- fe_values.JxW (q_point));
- };
-
-
- cell->get_dof_indices (local_dof_indices);
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- {
- for (unsigned int j=0; j<dofs_per_cell; ++j)
- system_matrix.add (local_dof_indices[i],
- local_dof_indices[j],
- cell_matrix(i,j));
-
- system_rhs(local_dof_indices[i]) += cell_rhs(i);
- };
- };
-
- // After the system of equations
- // has been assembled just as for
- // the previous examples, we still
- // have to eliminate the
- // constraints due to hanging
- // nodes. This is done using the
- // following two function calls:
- hanging_node_constraints.condense (system_matrix);
- hanging_node_constraints.condense (system_rhs);
- // Using them, degrees of freedom
- // associated to hanging nodes have
- // been removed from the linear
- // system and the independent
- // variables are only regular
- // nodes. The constrained nodes are
- // still in the linear system
- // (there is a one on the diagonal
- // of the matrix and all other
- // entries for this line are set to
- // zero) but the computed values
- // are invalid. They are set to
- // reasonable values in the
- // ``solve'' function.
-
- // As almost all the stuff before,
- // the interpolation of boundary
- // values works also for higher
- // order elements, but you need not
- // change your code for that. We
- // note that for proper results, it
- // is important that the
- // elimination of boundary nodes
- // from the system of equations
- // happens *after* the elimination
- // of hanging nodes.
- map<unsigned int,double> boundary_values;
- VectorTools::interpolate_boundary_values (dof_handler,
- 0,
- ZeroFunction<dim>(),
- boundary_values);
- MatrixTools<dim>::apply_boundary_values (boundary_values,
- system_matrix,
- solution,
- system_rhs);
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::solve ()
-{
- SolverControl solver_control (1000, 1e-12);
- PrimitiveVectorMemory<> vector_memory;
- SolverCG<> cg (solver_control, vector_memory);
-
- PreconditionRelaxation<>
- preconditioner(system_matrix,
- &SparseMatrix<double>::template precondition_SSOR<double>,
- 1.2);
-
- cg.solve (system_matrix, solution, system_rhs,
- preconditioner);
-
- // To set the constrained nodes to
- // resonable values, you have to
- // use the following function. It
- // computes the values of these
- // nodes from the values of the
- // unconstrained nodes, which are
- // the solutions of the linear
- // system just solved.
- hanging_node_constraints.distribute (solution);
-};
-
-
- // Instead of global refinement, we
- // now use a slightly more elaborate
- // scheme. We will use the
- // ``KellyErrorEstimator'' class
- // which implements an error
- // estimator for the Laplace
- // equation; it can in principle
- // handle variable coefficients, but
- // we will not use these advanced
- // features, but rather use its most
- // simple form since we are not
- // interested in quantitative results
- // but only in a quick way to
- // generate locally refined grids.
- //
- // Although the error estimator
- // derived by Kelly et al. was
- // originally developed for Laplace's
- // equation, we have found that it is
- // also well suited to quickly
- // generate locally refined grids for
- // a wide class of
- // problems. Basically, it looks at
- // the jumps of the gradients of the
- // solution over the faces of cells
- // (which is a measure for the second
- // derivatives) and scales it by the
- // size of the cell. It is therefore
- // a measure for the local smoothness
- // of the solution at the place of
- // each cell and it is thus
- // understandable that it yields
- // reasonable grids also for
- // hyperbolic transport problems or
- // the wave equation as well,
- // although these grids are certainly
- // suboptimal compared to approaches
- // specially tailored to the
- // problem. This error estimator may
- // therefore be understood as a quick
- // way to test an adaptive program.
-template <int dim>
-void LaplaceProblem<dim>::refine_grid ()
-{
- // The output of the error
- // estimator class is an error
- // indicator for each cell. We
- // therefore need a vector with as
- // many elements as there are
- // active cells. Since accuracy is
- // not that important here, the
- // data type for the error values
- // on each cell is ``float''
- // instead of ``double''.
- Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
-
- // Next, the error estimator can
- // handle Neumann boundary
- // conditions. For this, it needs
- // to know which parts of the
- // boundary have Neumann boundary
- // conditions and teh respective
- // boundary values there. This
- // information is mediated by a map
- // in which the keys are the
- // boundary part numbers and the
- // values are pointers to the
- // boundary value functions. We
- // create such a map, but since we
- // do not use Neumann boundary
- // conditions, the map will not
- // contain entries.
- KellyErrorEstimator<dim>::FunctionMap neumann_boundary;
-
- // Now we call the error
- // estimator. The parameters should
- // be clear apart from the
- // quadrature formula: as said
- // above, the jump of the gradients
- // of the solution across the faces
- // of a cell are considered. They
- // are integrated along the face,
- // but as usual in finite element
- // programs the integration is done
- // using quadrature. Since the
- // error estimator class can't know
- // itself which quadrature formula
- // might be appropriate, we have to
- // pass one to the function (of
- // course, the order of the
- // quadrature formula should be
- // adapted to the finite element
- // under consideration). Note that
- // since the quadrature has to take
- // place along faces, the dimension
- // of the quadrature formula is
- // ``dim-1'' rather then ``dim''.
- //
- // (What constitutes a suitable
- // quadrature rule here of course
- // depends on knowledge of the way
- // the error estimator evaluates
- // the solution field. As said
- // above, the jump of the gradient
- // is integrated over each face,
- // which would be a quadratic
- // function on each face for the
- // quadratic elements in use in
- // this example. In fact, however,
- // it is the square of the jump of
- // the gradient, as explained in
- // the documentation of that class,
- // and that is a quartic function,
- // for which a 3 point Gauss
- // formula is sufficient since it
- // integrates polynomials up to
- // order 5 exactly.)
- KellyErrorEstimator<dim>::estimate (dof_handler,
- QGauss3<dim-1>(),
- neumann_boundary,
- solution,
- estimated_error_per_cell);
-
- // The above function returned one
- // error indicator value for each
- // cell in the
- // ``estimated_error_per_cell''
- // array. Refinement is now done as
- // follows: refine those 30 per
- // cent of the cells with the
- // highest error values, and
- // coarsen the 3 per cent of cells
- // with the lowest values.
- //
- // One can easily verify that if
- // the second number were zero,
- // this would approximately result
- // in a doubling of cells in each
- // step in two space dimensions,
- // since for each of the 30 per
- // cent of cells four new would be
- // replaced. In practice, some more
- // cells are usually produced since
- // it is disallowed that a cell is
- // refined twice while the neighbor
- // cell is not refined; in that
- // case, the neighbor cell would be
- // refined as well.
- //
- // In many applications, the number
- // of cells to be coarsened would
- // be set to something larger than
- // only three per cent. A non-zero
- // value is useful especially if
- // for some reason the initial
- // (coarse) grid is already rather
- // refined. In that case, it might
- // be necessary to refine it in
- // some regions, while coarsening
- // in some other regions is
- // useful. In our case here, the
- // initial grid is very coarse, so
- // coarsening is only necessary in
- // a few regions where
- // over-refinement may have taken
- // place. Thus a small, non-zero
- // value is appropriate here.
- triangulation.refine_and_coarsen_fixed_number (estimated_error_per_cell,
- 0.3, 0.03);
-
- // After the previous function has
- // exited, some cells are flagged
- // for refinement, and some other
- // for coarsening. The refinement
- // or coarsening itself is not
- // performed by now, however, since
- // there are many cases where
- // further modifications of these
- // flags is useful. Here, we don't
- // want to do any such thing, so we
- // can tell the triangulation to
- // perform the actions for which
- // the cells are flagged.
- triangulation.execute_coarsening_and_refinement ();
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::output_results (const unsigned int cycle) const
-{
- // We want to write the grid in
- // each cycle. Here is another way
- // to quickly produce a filename
- // based on the cycle number. It
- // assumes that the numbers `0'
- // through `9' are represented
- // consecutively in the character
- // set (which is the case in all
- // known character sets). However,
- // this will only work if the cycle
- // number is less than ten, which
- // we check by an assertion.
- string filename = "grid-";
- filename += ('0' + cycle);
- Assert (cycle < 10, ExcInternalError());
-
- filename += ".eps";
- ofstream output (filename.c_str());
-
- // Using this filename, we write
- // each grid as a postscript file.
- GridOut grid_out;
- grid_out.write_eps (triangulation, output);
-};
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::run ()
-{
- for (unsigned int cycle=0; cycle<8; ++cycle)
- {
- cout << "Cycle " << cycle << ':' << endl;
-
- if (cycle == 0)
- {
- // Instead of reading the
- // grid from a file on disk
- // as in the previous
- // example, we now again
- // create it using a
- // library function. The
- // domain is again a
- // circle, which is why we
- // have to provide a
- // suitable boundary object
- // as well.
- //
- // You will notice by
- // looking at the coarse
- // grid that it is of
- // inferior quality than
- // the one which we read
- // from the file in the
- // previous example: the
- // cells are less equally
- // formed. However, using
- // the library function
- // this program works in
- // any space dimension,
- // which was not the case
- // before.
- GridGenerator::hyper_ball (triangulation);
-
- static const HyperBallBoundary<dim> boundary;
- triangulation.set_boundary (0, boundary);
-
- triangulation.refine_global (1);
- }
- else
- // In case this is not the
- // first cycle, we want to
- // refine the grid. Unlike
- // the global refinement
- // employed in the last
- // example, we now use the
- // adaptive procedure
- // described in the function
- // which we now call:
- {
- refine_grid ();
- };
-
-
- cout << " Number of active cells: "
- << triangulation.n_active_cells()
- << endl;
-
- setup_system ();
-
- cout << " Number of degrees of freedom: "
- << dof_handler.n_dofs()
- << endl;
-
- assemble_system ();
- solve ();
- output_results (cycle);
- };
-
- // The solution on the final grid
- // is now written to a file. As
- // already done in one of the
- // previous examples, we use the
- // EPS format for output, and to
- // obtain a reasonable view on the
- // solution, we rescale the z-axis
- // by a factor of four.
- DataOut<dim>::EpsFlags eps_flags;
- eps_flags.z_scaling = 4;
-
- DataOut<dim> data_out;
- data_out.set_flags (eps_flags);
-
- data_out.attach_dof_handler (dof_handler);
- data_out.add_data_vector (solution, "solution");
- data_out.build_patches ();
-
- ofstream output ("final-solution.eps");
- data_out.write_eps (output);
-};
-
-
- // The main function is unaltered in
- // its functionality against the
- // previous example, but we have
- // taken a step of additional
- // caution. Sometimes, something goes
- // wrong (such as insufficient disk
- // space upon writing an output file,
- // not enough memory when trying to
- // allocate a vector or a matrix, or
- // if we can't read from or write to
- // a file for whatever reason), and
- // in these cases the library will
- // throw exceptions. Since they do
- // not constitute programming errors,
- // these exceptions also are not
- // switched off in optimized mode, in
- // constrast to the ``Assert'' macro
- // which we have used to test against
- // programming errors. If uncought,
- // these exceptions propagate the
- // call tree up to the ``main''
- // function, and if they are not
- // caught there either, the program
- // is aborted. In many cases, like if
- // there is not enough memory or disk
- // space, we can't do anything but we
- // can at least print some text
- // trying to explain the reason why
- // the program failed. A way to do so
- // is shown in the following. It is
- // certainly useful to write any
- // larger program in this way, and
- // you can do so by more or less
- // copying this function apart from
- // the ``try'' block which contains
- // the code that constitutes the
- // actual functionality.
-int main ()
-{
-
- // The general idea behind the
- // layout of this function is as
- // follows: let's try to run the
- // program as we did before...
- try
- {
- deallog.depth_console (0);
-
- LaplaceProblem<2> laplace_problem_2d;
- laplace_problem_2d.run ();
- }
- // ...and if this should fail, try
- // to gather as much information as
- // possible. Specifically, if the
- // exception that was thrown is an
- // object of a class that is
- // derived from the C++ standard
- // class ``exception'', then we can
- // use the ``what'' member function
- // to get a string which describes
- // the reason why the exception was
- // thrown.
- //
- // The deal.II exception classes
- // are all derived from the
- // standard class, and in
- // particular, the ``exc.what()''
- // function will return
- // approximately the same string as
- // would be generated if the
- // exception was thrown using the
- // ``Assert'' macro. You have seen
- // the output of such an exception
- // in the previous example, and you
- // then know that it contains the
- // file and line number of where
- // the exception occured, and some
- // other information. This is also
- // what would be printed in the
- // following.
- catch (exception &exc)
- {
- cerr << endl << endl
- << "----------------------------------------------------"
- << endl;
- cerr << "Exception on processing: " << endl
- << exc.what() << endl
- << "Aborting!" << endl
- << "----------------------------------------------------"
- << endl;
- // We can't do much more than
- // printing as much information
- // as we can get to, so abort
- // with error:
- return 1;
- }
- // If the exception that was thrown
- // somewhere was not an object of a
- // class derived from the standard
- // ``exception'' class, then we
- // can't do anything at all. We
- // then simply print an error
- // message and exit.
- catch (...)
- {
- cerr << endl << endl
- << "----------------------------------------------------"
- << endl;
- cerr << "Unknown exception!" << endl
- << "Aborting!" << endl
- << "----------------------------------------------------"
- << endl;
- return 1;
- };
-
- // If we got to this point, there
- // was no exception which
- // propagated up to the main
- // functino (maybe there were some,
- // but they were caught somewhere
- // in the program or the
- // library). Therefore, the program
- // performed as was expected and we
- // can return without error.
- return 0;
-};
+++ /dev/null
-*.o *.go Makefile.dep *.gnuplot *.gmv *.eps
-step-7
+++ /dev/null
-# $Id$
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = $(basename $(shell echo step-*.cc))
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../../../
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g = $(lib-deal2-2d.g) \
- $(lib-lac.g) \
- $(lib-base.g)
-libs.o = $(lib-deal2-2d.o) \
- $(lib-lac.o) \
- $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
- libraries = $(target).go $(libs.g)
- flags = $(CXXFLAGS.g)
-else
- libraries = $(target).go $(libs.o)
- flags = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
- libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
- @echo ============================ Linking $@
- @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
- @echo ============================ Running $<
- @./$(target)
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
- -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
- @echo ==============debug========= $(<F)
- @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
- @echo ==============optimized===== $(<F)
- @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-(include-path-base)/baseh-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script. Since the
-# script prefixes the output names by `lib(include-path-base)/baseo' or `lib(include-path-base)/basego' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
- $(shell echo $(include-path-base)/base/*.h \
- $(include-path-lac)/lac/*.h \
- $(include-path-deal2)/*/*.h)
- @echo ============================ Remaking Makefile
- @perl $D/common/scripts/make_dependencies.pl $(INCLUDE) $(target).cc \
- | perl -pi -e 's!lib/g?o/!!g;' \
- > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
+++ /dev/null
-/* $Id$ */
-/* Author: Wolfgang Bangerth, University of Heidelberg, 2000 */
-
- // These first include files have all
- // been treated in previous examples,
- // so we won't explain what is in
- // them again.
-#include <base/quadrature_lib.h>
-#include <base/function.h>
-#include <base/logstream.h>
-#include <lac/vector.h>
-#include <lac/full_matrix.h>
-#include <lac/sparse_matrix.h>
-#include <lac/solver_cg.h>
-#include <lac/vector_memory.h>
-#include <lac/precondition.h>
-#include <grid/tria.h>
-#include <grid/grid_generator.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria_boundary_lib.h>
-#include <dofs/dof_handler.h>
-#include <dofs/dof_constraints.h>
-#include <dofs/dof_accessor.h>
-#include <dofs/dof_tools.h>
-#include <fe/fe_lib.lagrange.h>
-#include <numerics/matrices.h>
-#include <numerics/error_estimator.h>
-#include <numerics/data_out.h>
-
- // In this example, we will not use
- // the numeration scheme which is
- // used per default by the
- // ``DoFHandler'' class, but will
- // renumber them using the
- // Cuthill-McKee algorithm. The
- // necessary functions are declared
- // in the following file:
-#include <numerics/dof_renumbering.h>
- // Then we will show a little trick
- // how we can make sure that objects
- // are not deleted while they are
- // still in use. For this purpose,
- // there is the ``SmartPointer''
- // helper class, which is declared in
- // this file:
-#include <base/smartpointer.h>
- // Then we will want to use the
- // ``integrate_difference'' function
- // mentioned in the introduction. It
- // comes from this file:
-#include <numerics/vectors.h>
- // And finally, we need to use the
- // ``FEFaceValues'' class, which is
- // declare in the same file as the
- // ``FEValues'' class:
-#include <fe/fe_values.h>
-
-#include <fstream>
-
-
-
- // Since we want to compare the
- // exactly known continuous solution
- // to the computed one, we need a
- // function object which represents
- // the continuous solution. On the
- // other hand, we need the right hand
- // side function, and that one of
- // course shares some characteristics
- // with the solution. In order to
- // reduce dependencies which arise if
- // we have to change something in
- // both classes at the same time, we
- // exclude the common characteristics
- // of both functions into a base
- // class.
- //
- // The common characteristics for the
- // given solution, which as explained
- // in the introduction is a sum of
- // three exponentials, are here: the
- // number of exponentials, their
- // centers, and their half width. We
- // declare them in the following
- // class. Since the number of
- // exponentials is a constant scalar
- // integral quantity, C++ allows its
- // definition (i.e. assigning a
- // value) right at the place of
- // declaration (i.e. where we declare
- // that such a variable exists).
-template <int dim>
-class SolutionBase
-{
- protected:
- static const unsigned int n_source_centers = 3;
- static const Point<dim> source_centers[n_source_centers];
- static const double width;
-};
-
-
- // The variables which denote the
- // centers and the width of the
- // exponentials have just been
- // declared, now we still need to
- // assign values to them. Here, we
- // can show another small piece of
- // template sourcery, namely how we
- // can assign different values to
- // these variables depending on the
- // dimension. We will only use the 2d
- // case in the program, but we show
- // the 1d case for exposition of a
- // useful technique.
- //
- // First we assign values to the
- // centers for the 1d case, where we
- // place the centers equidistanly at
- // -1/3, 0, and 1/3:
-template <>
-const Point<1>
-SolutionBase<1>::source_centers[SolutionBase<1>::n_source_centers]
-= { Point<1>(-1.0 / 3.0),
- Point<1>(0.0),
- Point<1>(+1.0 / 3.0) };
-
- // Then we place the centers for the
- // 2d case as follows:
-template <>
-const Point<2>
-SolutionBase<2>::source_centers[SolutionBase<2>::n_source_centers]
-= { Point<2>(-0.5, +0.5),
- Point<2>(-0.5, -0.5),
- Point<2>(+0.5, -0.5) };
-
- // There remains to assign a value to
- // the half-width of the
- // exponentials. We would like to use
- // the same value for all dimensions,
- // so here is how that works:
-template <int dim>
-const double SolutionBase<dim>::width = 1./3.;
-
-
-
- // After declaring and defining the
- // characteristics of solution and
- // right hand side, we can declare
- // the classes representing these
- // two. They both represent
- // continuous functions, so they are
- // derived from the ``Function<dim>''
- // base class, and they also inherit
- // the characteristics defined in the
- // ``SolutionBase'' class.
- //
- // The actual classes are declared in
- // the following. Note that in order
- // to compute the error of the
- // numerical solution against the
- // continuous one in the L2 and H1
- // norms, we have to export value and
- // gradient of the exact solution,
- // which is done by overloading the
- // respective virtual member
- // functions in the ``Function'' base
- // class.
-template <int dim>
-class Solution : public Function<dim>,
- protected SolutionBase<dim>
-{
- public:
- virtual double value (const Point<dim> &p,
- const unsigned int component = 0) const;
- virtual Tensor<1,dim> gradient (const Point<dim> &p,
- const unsigned int component = 0) const;
-};
-
-
- // The actual definition of the
- // values and gradients of the exact
- // solution class is according to
- // their mathematical definition and
- // probably needs not much
- // explanation.
-template <int dim>
-double Solution<dim>::value (const Point<dim> &p,
- const unsigned int) const
-{
- double return_value = 0;
- for (unsigned int i=0; i<n_source_centers; ++i)
- {
- // One of the few things worth
- // mentioning is the following
- // variables, which represents
- // the vector (x-x_i). It is
- // computed in the way that one
- // would intuitively expect:
- const Point<dim> shifted_point = p-source_centers[i];
-
- // The ``Point<dim>'' class
- // offers a member function
- // ``square'' that does what
- // it's name suggests.
- return_value += exp(-shifted_point.square() / (width*width));
- };
-
- return return_value;
-};
-
-
-
-template <int dim>
-Tensor<1,dim> Solution<dim>::gradient (const Point<dim> &p,
- const unsigned int) const
-{
- // In order to accumulate the
- // gradient from the contributions
- // of the exponentials, we allocate
- // an object which denotes the
- // mathematical quantity of a
- // tensor of rank ``1'' and
- // dimension ``dim''. Its default
- // constructor sets it to the
- // vector containing only zeroes,
- // so we need not explicitely care
- // for its initialization.
- Tensor<1,dim> return_value;
- // Note that we could as well have
- // taken the type of the object to
- // be ``Point<dim>''. Tensors of
- // rank 1 and points are almost
- // exchangeable, and have only very
- // slightly different mathematical
- // meanings. In fact, the
- // ``Point<dim>'' class is derived
- // from the ``Tensor<1,dim>''
- // class, which makes up for their
- // mutual exchangeability.
-
- for (unsigned int i=0; i<n_source_centers; ++i)
- {
- const Point<dim> shifted_point = p-source_centers[i];
-
- // For the gradient, note that
- // it's direction is along
- // (x-x_i), so we add up
- // multiples of this distance
- // vector, where the factor is
- // given by the exponentials.
- return_value += (-2 / (width*width) *
- exp(-shifted_point.square() / (width*width)) *
- shifted_point);
- };
-
- return return_value;
-};
-
-
-
- // Besides the function that
- // represents the exact solution, we
- // also need a function which we can
- // use as right hand side when
- // assembling the linear system of
- // discretized equations. This is
- // accomplished using the following
- // class and the following definition
- // of its function. Note that here we
- // only need the value of the
- // function, not its gradients or
- // higher derivatives.
-template <int dim>
-class RightHandSide : public Function<dim>,
- protected SolutionBase<dim>
-{
- public:
- virtual double value (const Point<dim> &p,
- const unsigned int component = 0) const;
-};
-
-
- // The value of the right hand side
- // is given by the negative Laplacian
- // of the solution plus the solution
- // itself, since we wanted to solve
- // Helmholtz's equation:
-template <int dim>
-double RightHandSide<dim>::value (const Point<dim> &p,
- const unsigned int) const
-{
- double return_value = 0;
- for (unsigned int i=0; i<n_source_centers; ++i)
- {
- const Point<dim> shifted_point = p-source_centers[i];
-
- // The first contribution is
- // the Laplacian:
- return_value += ((2*dim - 4*shifted_point.square()/(width*width)) /
- (width*width) *
- exp(-shifted_point.square() / (width*width)));
- // And the second is the
- // solution itself:
- return_value += exp(-shifted_point.square() / (width*width));
- };
-
- return return_value;
-};
-
-
-
- // Then we need the class that does
- // all the work.
-//.......................
-template <int dim>
-class LaplaceProblem
-{
- public:
-//.........
- enum RefinementMode {
- global_refinement, adaptive_refinement
- };
-
-//.......
- LaplaceProblem (const FiniteElement<dim> &fe,
- const RefinementMode refinement_mode);
- ~LaplaceProblem ();
-
- void run ();
-
- private:
-//.......
- void setup_system ();
- void assemble_system ();
- void solve ();
- void refine_grid ();
- void process_solution (const unsigned int cycle) const;
-
- Triangulation<dim> triangulation;
- DoFHandler<dim> dof_handler;
-
- // The finite elements which the
- // objects of this class operate
- // on are passed to the
- // constructor of this class. It
- // has to store a pointer to the
- // finite element for the member
- // functions to use. Now, for the
- // present class there is no big
- // deal in that, but since we
- // want to show techniques rather
- // than solutions in these
- // programs, we will here point
- // out a problem that often
- // occurs -- and of course the
- // right solution as well.
- //
- // Consider the following
- // situation that occurs in all
- // the example programs: we have
- // a triangulation object, and we
- // have a finite element object,
- // and we also have an object of
- // type ``DoFHandler'' that uses
- // both of the first two. These
- // three objects all have a
- // lifetime that is rather long
- // compared to most other
- // objects: they are basically
- // set at the beginning of the
- // program or an outer loop, and
- // they are destroyed at the very
- // end. The question is: can we
- // guarantee that the two objects
- // which the ``DoFHandler'' uses,
- // live at least as long as they
- // are in use? This means that
- // the ``DoFHandler'' must have a
- // kind of lock on the
- // destruction of the other
- // objects, and it can only
- // release this lock once it has
- // cleared all active references
- // to these objects. We have seen
- // what happens if we violate
- // this order of destruction in
- // the previous example program:
- // an exception is thrown that
- // terminates the program in
- // order to notify the programmer
- // of this potentially dangerous
- // state where an object is
- // pointed to that no longer
- // persists.
- //
- // We will show here how the
- // library managed to find out
- // that there are still active
- // references to an
- // object. Basically, the method
- // is along the following line:
- // all objects that are subject
- // to such potentially dangerous
- // pointers are derived from a
- // class called
- // ``Subscriptor''. For example,
- // the ``Triangulation'',
- // ``DoFHandler'', and a base
- // class of the ``FiniteElement''
- // class are derived from
- // ``Subscriptor``. This latter
- // class does not offer much
- // functionality, but it has a
- // built-in counter which we can
- // subscribe to, thus the name of
- // the class. Whenever we
- // initialize a pointer to that
- // object, we can increase it use
- // counter, and when we move away
- // our pointer or do not need it
- // any more, we decrease the
- // counter again. This way, we
- // can always check how many
- // objects still use that
- // object. If an object of a
- // class that is derived from the
- // ``Subscriptor'' class is
- // destroyed, it also has to call
- // the destructor of the
- // ``Subscriptor'' class; this
- // will then check whether the
- // counter is really zero. If
- // yes, then there are no active
- // references to this object any
- // more, and we can safely
- // destroy it. If the counter is
- // non-zero, however, then the
- // destruction would result in
- // stale and thus potentially
- // dangerous pointers, and we
- // rather throw an exception to
- // alert the programmer that she
- // is doing something dangerous
- // and better had her program
- // fixed.
- //
- // While this certainly all
- // sounds very well, it has some
- // problems in terms of
- // usability: what happens if I
- // forget to increase the counter
- // when I let a pointer point to
- // such an object? And what
- // happens if I forget to
- // decrease it again? Note that
- // this may lead to extremely
- // difficult to find bugs, since
- // the place where we have
- // forgotten something may be
- // very far away from the place
- // where the check for zeroness
- // of the counter upon
- // destruction actually
- // fails. This kind of bug is
- // very annoying and usually very
- // hard to fix.
- //
- // The solution to this problem
- // is to again use some C++
- // trickery: we create a class
- // that acts just like a pointer,
- // i.e. can be dereferenced, can
- // be assigned to and from other
- // pointers, and so on. This can
- // be done by overloading the
- // several dereferencing
- // operators of that
- // class. Withing the
- // constructors, destructors, and
- // assignement operators of that
- // class, we can however also
- // manage increasing or
- // decreasing the use counters of
- // the objects we point
- // to. Objects of that class
- // therefore can be used just
- // like ordinary pointers to
- // objects, but they also serve
- // to change the use counters of
- // those objects without the need
- // for the programmer to do so
- // herself. The class that
- // actually does all this is
- // called ``SmartPointer'' and
- // takes as template parameter
- // the data type of the object
- // which it shall point to. The
- // latter type may be any class,
- // as long as it is derived from
- // the ``Subscriptor'' class.
- //
- // In the present example
- // program, we protect object
- // using the pointer to the
- // finite element, i.e. the
- // following member variable,
- // from the situation that for
- // some reason the finite element
- // pointed to is destroyed while
- // still in use. Note that the
- // pointer is assigned at
- // construction time of this
- // object, and destroyed upon
- // destruction of this object, so
- // the lock on the destruction of
- // the finite element object is
- // basically all through the
- // lifetime of this object.
- SmartPointer<const FiniteElement<dim> > fe;
-
- // The next few member variables
- // are unspectacular, since they
- // have already been discussed in
- // detail:
- ConstraintMatrix hanging_node_constraints;
-
- SparsityPattern sparsity_pattern;
- SparseMatrix<double> system_matrix;
-
- Vector<double> solution;
- Vector<double> system_rhs;
-//.............
- RefinementMode refinement_mode;
-};
-
-
-
-//........
-template <int dim>
-LaplaceProblem<dim>::LaplaceProblem (const FiniteElement<dim> &fe,
- const RefinementMode refinement_mode) :
- dof_handler (triangulation),
- fe (&fe),
- refinement_mode (refinement_mode)
-{};
-
-
-
-template <int dim>
-LaplaceProblem<dim>::~LaplaceProblem ()
-{
- dof_handler.clear ();
-};
-
-
- // The following function sets up the
- // degrees of freedom, sizes of
- // matrices and vectors, etc. Most of
- // its functionality has been showed
- // in previous examples, the only
- // difference being the renumbering
- // step.
-template <int dim>
-void LaplaceProblem<dim>::setup_system ()
-{
- dof_handler.distribute_dofs (*fe);
- // Renumbering the degrees of
- // freedom is not overly difficult,
- // as long as you use one of the
- // algorithms included in the
- // library. It requires just one
- // line of code, namely the
- // following:
- DoFRenumbering::Cuthill_McKee (dof_handler);
- // Note, however, that when you
- // renumber the degrees of freedom,
- // you must do so immediately after
- // distributing them, since such
- // things as hanging nodes, the
- // sparsity pattern etc. depend on
- // the absolute numbers which are
- // altered by renumbering.
- //
- // Renumbering does not serve any
- // specific purpose in this
- // example, it is done only for
- // exposition of the technique. To
- // see the effect of renumbering on
- // the sparsity pattern of the
- // matrix, refer to the second
- // example program.
-
- // The rest of the function is
- // almost identitcally taken over
- // from previous examples:
- hanging_node_constraints.clear ();
- DoFTools::make_hanging_node_constraints (dof_handler,
- hanging_node_constraints);
- hanging_node_constraints.close ();
-
- sparsity_pattern.reinit (dof_handler.n_dofs(),
- dof_handler.n_dofs(),
- dof_handler.max_couplings_between_dofs());
- DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
- hanging_node_constraints.condense (sparsity_pattern);
- sparsity_pattern.compress();
-
- system_matrix.reinit (sparsity_pattern);
-
- solution.reinit (dof_handler.n_dofs());
- system_rhs.reinit (dof_handler.n_dofs());
-};
-
-
-
- // Assembling the system of equations
- // for the problem at hand is mostly
- // as for the example programs
- // before. However, some things have
- // changed anyway, so we comment on
- // this function fairly extensively.
-template <int dim>
-void LaplaceProblem<dim>::assemble_system ()
-{
- // First we need to define objects
- // which will be used as quadrature
- // formula for domain and face
- // integrals.
- //
- // Note the way in which we define
- // a quadrature rule for the faces:
- // it is simply a quadrature rule
- // for one dimension less!
- QGauss3<dim> quadrature_formula;
- QGauss3<dim-1> face_quadrature_formula;
- // For simpler use later on, we
- // alias the number of quadrature
- // points to local variables:
- const unsigned int n_q_points = quadrature_formula.n_quadrature_points;
- const unsigned int n_face_q_points = face_quadrature_formula.n_quadrature_points;
-
- // Then we need objects which can
- // evaluate the values, gradients,
- // etc of the shape functions at
- // the quadrature points. While it
- // seems that it should be feasible
- // to do it with one object for
- // both domain and face integrals,
- // there is a subtle difference
- // since the weights in the domain
- // integrals include the measure of
- // the cell in the domain, while
- // the face integral quadrature
- // requires the measure of the face
- // in a lower-dimensional
- // mannifold. Internally these two
- // classes are rooted on a common
- // base class which does most of
- // the work; that, however, is
- // something that you need not
- // worry about.
- //
- // For the domain integrals in the
- // bilinear form for Helmholtz's
- // equation, we need to compute the
- // values and gradients, as well as
- // the weights at the quadrature
- // points. Furthermore, we need the
- // quadrature points on the real
- // cell (rather than on the unit
- // cell) to evaluate the right hand
- // side function.
- FEValues<dim> fe_values (*fe, quadrature_formula,
- UpdateFlags(update_values |
- update_gradients |
- update_q_points |
- update_JxW_values));
-
- // For the face integrals, we only
- // need the values of the shape
- // functions, as well as the
- // weights. We also need the normal
- // vectors and quadrature points on
- // the real cell since we want to
- // determine the Neumann values
- // from the exact solution object
- // (see below).
- FEFaceValues<dim> fe_face_values (*fe, face_quadrature_formula,
- UpdateFlags(update_values |
- update_q_points |
- update_normal_vectors |
- update_JxW_values));
-
- // In order to make programming
- // more readable below, we alias
- // the number of degrees of freedom
- // per cell to a local variable, as
- // already done for the number of
- // quadrature points above:
- const unsigned int dofs_per_cell = fe->dofs_per_cell;
-
- // Then we need some objects
- // already known from previous
- // examples: An object denoting the
- // right hand side function, its
- // values at the quadrature points
- // on a cell, the cell matrix and
- // right hand side, and the indices
- // of the degrees of freedom on a
- // cell.
- RightHandSide<dim> right_hand_side;
- vector<double> rhs_values (n_q_points);
-
- FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);
- Vector<double> cell_rhs (dofs_per_cell);
-
- vector<unsigned int> local_dof_indices (dofs_per_cell);
-
- // Then we define an object
- // denoting the exact solution
- // function. We will use it to
- // compute the Neumann values at
- // the boundary from it. Usually,
- // one would of course do so using
- // a separate object, in particular
- // since the exact solution is not
- // known while the Neumann values
- // are prescribed. We will,
- // however, be a little bit lazy
- // and use what we already have in
- // information. Real-life programs
- // would to go other ways here, of
- // course.
- Solution<dim> exact_solution;
-
- // Now for the main loop over all
- // cells. This is mostly unchanged
- // from previous examples, so we
- // only comment on the things that
- // have changed.
- DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(),
- endc = dof_handler.end();
- for (; cell!=endc; ++cell)
- {
- cell_matrix.clear ();
- cell_rhs.clear ();
-
- fe_values.reinit (cell);
- const FullMatrix<double>
- & shape_values = fe_values.get_shape_values();
- const vector<vector<Tensor<1,dim> > >
- & shape_grads = fe_values.get_shape_grads();
- const vector<double>
- & JxW_values = fe_values.get_JxW_values();
- const vector<Point<dim> >
- & q_points = fe_values.get_quadrature_points();
-
- right_hand_side.value_list (q_points, rhs_values);
-
- for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- {
- for (unsigned int j=0; j<dofs_per_cell; ++j)
- // The first thing that
- // has changed is the
- // bilinear form. It
- // now contains the
- // additional term from
- // the Helmholtz
- // equation, namely the
- // scalar products of
- // the two function
- // values, rather than
- // their gradients,
- // which is the second
- // term below:
- cell_matrix(i,j) += ((shape_grads[i][q_point] *
- shape_grads[j][q_point] *
- JxW_values[q_point])
- +
- (shape_values(i,q_point) *
- shape_values(j,q_point) *
- JxW_values[q_point]));
-
- cell_rhs(i) += (shape_values (i,q_point) *
- rhs_values [q_point] *
- fe_values.JxW (q_point));
- };
-
- // Then there is that second
- // term on the right hand side,
- // the contour integral. First
- // we have to find out whether
- // the intersection of the face
- // of this cell with the
- // boundary part Gamma2 is
- // nonzero. To this end, we
- // loop over all faces and
- // check whether its boundary
- // indicator equals ``1'',
- // which is the value that we
- // have assigned to that
- // portions of the boundary
- // composing Gamma2 in a
- // function further below. The
- // default value of boundary
- // indicators is ``0'' for
- // external faces, and ``255''
- // for internal faces (the
- // latter value should never be
- // changed, and there is also
- // no need to do so), so faces
- // can only have an indicator
- // equal to ``1'' if we have
- // explicitely set it.
- for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
- if (cell->face(face)->boundary_indicator() == 1)
- {
- // If we came into here,
- // then we have found an
- // external face
- // belonging to
- // Gamma2. Next, we have
- // to compute the values
- // of the shape functions
- // and the other
- // quantities which we
- // will need for the
- // computation of the
- // contour integral. This
- // is done using the
- // ``reinit'' function
- // which we already know
- // from the ``FEValue''
- // class:
- fe_face_values.reinit (cell, face);
-
- // Then, for simpler
- // access, we alias the
- // various quantities to
- // local variables:
- const FullMatrix<double>
- & face_shape_values = fe_face_values.get_shape_values();
- const vector<double>
- & face_JxW_values = fe_face_values.get_JxW_values();
- const vector<Point<dim> >
- & face_q_points = fe_face_values.get_quadrature_points();
- const vector<Point<dim> >
- & face_normal_vectors = fe_face_values.get_normal_vectors ();
-
- // And we can then
- // perform the
- // integration by using a
- // loop over all
- // quadrature points.
- for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
- {
- // On each quadrature
- // point, we first
- // compute the value
- // of the normal
- // derivative. We do
- // so using the
- // gradient of the
- // exact solution and
- // the normal vector
- // to the face at the
- // present quadrature
- // point:
- const double neumann_value
- = (exact_solution.gradient (face_q_points[q_point]) *
- face_normal_vectors[q_point]);
-
- // Using this, we can
- // compute the
- // contribution of
- // this face for each
- // shape function:
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- cell_rhs(i) += (neumann_value *
- face_shape_values(i,q_point) *
- face_JxW_values[q_point]);
- };
- };
-
- // Now that we have the
- // contributions of the present
- // cell, we can transfer it to
- // the global matrix and right
- // hand side vector, as in the
- // examples before.
- cell->get_dof_indices (local_dof_indices);
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- {
- for (unsigned int j=0; j<dofs_per_cell; ++j)
- system_matrix.add (local_dof_indices[i],
- local_dof_indices[j],
- cell_matrix(i,j));
-
- system_rhs(local_dof_indices[i]) += cell_rhs(i);
- };
- };
-
- // The rest of the function has
- // also been shown previously:
- hanging_node_constraints.condense (system_matrix);
- hanging_node_constraints.condense (system_rhs);
-
- // Only with the interpolation of
- // boundary values, there is one
- // notable thing, namely that now
- // the boundary indicator for which
- // we interpolate boundary values
- // (denoted by the second parameter
- // to
- // ``interpolate_boundary_values'')
- // does not represent the whole
- // boundary an more. Rather, it is
- // that portion of the boundary
- // which we have not assigned
- // another indicator (see
- // below). The degrees of freedom
- // at the boundary that do not
- // belong to Gamma1 are therefore
- // excluded from the interpolation
- // of boundary values.
- map<unsigned int,double> boundary_values;
- VectorTools::interpolate_boundary_values (dof_handler,
- 0,
- Solution<dim>(),
- boundary_values);
- MatrixTools<dim>::apply_boundary_values (boundary_values,
- system_matrix,
- solution,
- system_rhs);
-};
-
-
- // Solving the system of equations is
- // done in the same way as before.
-template <int dim>
-void LaplaceProblem<dim>::solve ()
-{
- SolverControl solver_control (1000, 1e-12);
- PrimitiveVectorMemory<> vector_memory;
- SolverCG<> cg (solver_control, vector_memory);
-
- PreconditionRelaxation<>
- preconditioner(system_matrix,
- &SparseMatrix<double>::template precondition_SSOR<double>,
- 1.2);
-
- cg.solve (system_matrix, solution, system_rhs,
- preconditioner);
-
- hanging_node_constraints.distribute (solution);
-};
-
-
-//.....................
-template <int dim>
-void LaplaceProblem<dim>::refine_grid ()
-{
- switch (refinement_mode)
- {
- case global_refinement:
- {
- triangulation.refine_global (1);
- break;
- };
-
- case adaptive_refinement:
- {
- Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
-
- KellyErrorEstimator<dim>::FunctionMap neumann_boundary;
- KellyErrorEstimator<dim>::estimate (dof_handler,
- QGauss3<dim-1>(),
- neumann_boundary,
- solution,
- estimated_error_per_cell);
-
- triangulation.refine_and_coarsen_fixed_number (estimated_error_per_cell,
- 0.3, 0.03);
-
- triangulation.execute_coarsening_and_refinement ();
-
- break;
- };
- };
-};
-
-//...............
-template <int dim>
-void LaplaceProblem<dim>::process_solution (const unsigned int cycle) const
-{
- Vector<float> difference_per_cell (triangulation.n_active_cells());
-
- VectorTools::integrate_difference (dof_handler,
- solution,
- Solution<dim>(),
- difference_per_cell,
- QGauss3<dim>(),
- L2_norm);
- const double L2_error = difference_per_cell.l2_norm();
-
- VectorTools::integrate_difference (dof_handler,
- solution,
- Solution<dim>(),
- difference_per_cell,
- QGauss3<dim>(),
- H1_seminorm);
- const double H1_error = difference_per_cell.l2_norm();
-
- VectorTools::integrate_difference (dof_handler,
- solution,
- Solution<dim>(),
- difference_per_cell,
- QGauss3<dim>(),
- Linfty_norm);
- const double Linfty_error = difference_per_cell.linfty_norm();
-
- cout << "Cycle " << cycle << ':'
- << endl
- << " Number of active cells: "
- << triangulation.n_active_cells()
- << endl
- << " Number of degrees of freedom: "
- << dof_handler.n_dofs()
- << endl;
-
- cout << " L2 error: " << L2_error << endl
- << " H1 error: " << H1_error << endl
- << " Linfty error: " << Linfty_error << endl;
-};
-
-
-
- // The following function is the main
- // one which controls the flow of
- // execution. The basic layout is as
- // in previous examples: an outer
- // loop over successively refined
- // grids, and in this loop first
- // problem setup, assemblage of the
- // linear system, solution, and
- // postprocessing.
-template <int dim>
-void LaplaceProblem<dim>::run ()
-{
- for (unsigned int cycle=0; cycle<9; ++cycle)
- {
- // The first action in each
- // iteration of the outer loop
- // is setting up the grid on
- // which we will solve in this
- // iteration. In the first
- // iteration, the coarsest grid
- // is generated, in later
- // iterations it is refined,
- // for which we call the
- // ``refine_grid'' function.
- if (cycle == 0)
- {
- // Setting up the coarse
- // grid is done as in
- // previous examples: we
- // first create an initial
- // grid, which is the unit
- // square [-1,1]x[-1,1] in
- // the present case. Then
- // we refine it globally a
- // specific number of
- // times.
- GridGenerator::hyper_cube (triangulation, -1, 1);
- triangulation.refine_global (1);
-
- // However, here we have to
- // do something else in
- // addition: mark those
- // faces that belong to the
- // different components of
- // the boundary, Gamma1 and
- // Gamma2. We will use the
- // following convention:
- // Faces belonging to
- // Gamma1 will have the
- // boundary indicator ``0''
- // (which is the default,
- // so we don't have to set
- // it explicitely), and
- // faces belonging to
- // Gamma2 will use ``1'' as
- // boundary indicator.
- //
- // To set these values, we
- // loop over all cells,
- // then over all faces of a
- // given cell, check
- // whether it belongs to
- // the boundary Gamma2, and
- // if so set its boundary
- // indicator to ``1''.
- //
- // It is worth noting that
- // we have to loop over all
- // cells here, not only the
- // active ones. The reason
- // is that upon refinement,
- // newly created faces
- // inherit the boundary
- // indicator of their
- // parent face. If we now
- // only set the boundary
- // indicator for active
- // faces, coarsen some
- // cells and refine them
- // later on, they will
- // again have the boundary
- // indicator of the parent
- // cell which we have not
- // modified, instead of the
- // one we
- // intended. Therefore, we
- // have to change the
- // boundary indicators of
- // all faces on Gamma2,
- // irrespective whether
- // they are active or not.
- Triangulation<dim>::cell_iterator cell = triangulation.begin (),
- endc = triangulation.end();
- for (; cell!=endc; ++cell)
- for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
- if ((cell->face(face)->center()(0) == -1)
- ||
- (cell->face(face)->center()(1) == -1))
- cell->face(face)->set_boundary_indicator (1);
- }
- else
- // If this is not the first
- // step, the we call
- // ``refine_grid'' to
- // actually refine the grid
- // according to the
- // refinement mode passed to
- // the constructor.
- refine_grid ();
-
- // The next steps you already
- // know from previous
- // examples. This is mostly the
- // basic set-up of every finite
- // element program:
- setup_system ();
-
- assemble_system ();
- solve ();
-
- // The last step in this chain
- // of function calls is usually
- // evaluation of the computed
- // solution for the quantities
- // one is interested in. This
- // is done in the following
- // function. We pass the number
- // of the loop iteration since
- // that might be of interest to
- // see in the logs which this
- // function produces.
- process_solution (cycle);
- };
-
- // After the last iteration we
- // output the solution on the
- // finest grid. This is done using
- // the following sequence of
- // statements which you have
- // already seen in previous
- // examples:
- string filename;
- switch (refinement_mode)
- {
- case global_refinement:
- filename = "solution-global";
- break;
- case adaptive_refinement:
- filename = "solution-adaptive";
- break;
- default:
- Assert (false, ExcInternalError());
- };
- filename += ".gmv";
-
- ofstream output (filename.c_str());
-
-
- DataOut<dim> data_out;
- data_out.attach_dof_handler (dof_handler);
- data_out.add_data_vector (solution, "solution");
- data_out.build_patches ();
- data_out.write_gmv (output);
-};
-
-
-//.................
-int main ()
-{
- try
- {
- deallog.depth_console (0);
-
- FEQ1<2> fe;
- LaplaceProblem<2> laplace_problem_2d (fe, LaplaceProblem<2>::adaptive_refinement);
- laplace_problem_2d.run ();
- }
- catch (exception &exc)
- {
- cerr << endl << endl
- << "----------------------------------------------------"
- << endl;
- cerr << "Exception on processing: " << endl
- << exc.what() << endl
- << "Aborting!" << endl
- << "----------------------------------------------------"
- << endl;
- return 1;
- }
- catch (...)
- {
- cerr << endl << endl
- << "----------------------------------------------------"
- << endl;
- cerr << "Unknown exception!" << endl
- << "Aborting!" << endl
- << "----------------------------------------------------"
- << endl;
- return 1;
- };
-
- return 0;
-};
+++ /dev/null
-*.o *.go Makefile.dep *.gnuplot *.gmv *.eps
-step-8
+++ /dev/null
-# $Id$
-
-
-# For the small projects Makefile, you basically need to fill in only
-# four fields.
-#
-# The first is the name of the application. It is assumed that the
-# application name is the same as the base file name of the single C++
-# file from which the application is generated.
-target = $(basename $(shell echo step-*.cc))
-
-# The second field determines whether you want to run your program in
-# debug or optimized mode. The latter is significantly faster, but no
-# run-time checking of parameters and internal states is performed, so
-# you should set this value to `on' while you develop your program,
-# and to `off' when running production computations.
-debug-mode = on
-
-
-# As third field, we need to give the path to the top-level deal.II
-# directory. You need to adjust this to your needs. Since this path is
-# probably the most often needed one in the Makefile internals, it is
-# designated by a single-character variable, since that can be
-# reference using $D only, i.e. without the parentheses that are
-# required for most other parameters, as e.g. in $(target).
-D = ../../../../
-
-
-# The last field specifies the names of data and other files that
-# shall be deleted when calling `make clean'. Object and backup files,
-# executables and the like are removed anyway. Here, we give a list of
-# files in the various output formats that deal.II supports.
-clean-up-files = *gmv *gnuplot *gpl *eps *pov
-
-
-
-
-#
-#
-# Usually, you will not need to change something beyond this point.
-#
-#
-# The next statement tell the `make' program where to find the
-# deal.II top level directory and to include the file with the global
-# settings
-include $D/common/Make.global_options
-
-
-# Since the whole project consists of only one file, we need not
-# consider difficult dependencies. We only have to declare the
-# libraries which we want to link to the object file, and there need
-# to be two sets of libraries: one for the debug mode version of the
-# application and one for the optimized mode. Here we have selected
-# the versions for 2d. Note that the order in which the libraries are
-# given here is important and that your applications won't link
-# properly if they are given in another order.
-#
-# You may need to augment the lists of libraries when compiling your
-# program for other dimensions, or when using third party libraries
-libs.g = $(lib-deal2-2d.g) \
- $(lib-lac.g) \
- $(lib-base.g)
-libs.o = $(lib-deal2-2d.o) \
- $(lib-lac.o) \
- $(lib-base.o)
-
-
-# We now use the variable defined above which switch between debug and
-# optimized mode to select the correct compiler flags and the set of
-# libraries to link with. Included in the list of libraries is the
-# name of the object file which we will produce from the single C++
-# file. Note that by default we use the extension .go for object files
-# compiled in debug mode and .o for object files in optimized mode.
-ifeq ($(debug-mode),on)
- libraries = $(target).go $(libs.g)
- flags = $(CXXFLAGS.g)
-else
- libraries = $(target).go $(libs.o)
- flags = $(CXXFLAGS.o)
-endif
-
-
-# If in multithread mode, add the ACE library to the libraries which
-# we need to link with:
-ifneq ($(with-multithreading),no)
- libraries += $(lib-ACE)
-endif
-
-
-
-# Now comes the first production rule: how to link the single object
-# file produced from the single C++ file into the executable. Since
-# this is the first rule in the Makefile, it is the one `make' selects
-# if you call it without arguments.
-$(target) : $(libraries)
- @echo ============================ Linking $@
- @$(CXX) $(flags) -o $@ $^
-
-
-# To make running the application somewhat independent of the actual
-# program name, we usually declare a rule `run' which simply runs the
-# program. You can then run it by typing `make run'. This is also
-# useful if you want to call the executable with arguments which do
-# not change frequently. You may then want to add them to the
-# following rule:
-run: $(target)
- @echo ============================ Running $<
- @./$(target)
-
-
-# As a last rule to the `make' program, we define what to do when
-# cleaning up a directory. This usually involves deleting object files
-# and other automatically created files such as the executable itself,
-# backup files, and data files. Since the latter are not usually quite
-# diverse, you needed to declare them at the top of this file.
-clean:
- -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files)
-
-
-# Since we have not yet stated how to make an object file from a C++
-# file, we should do so now. Since the many flags passed to the
-# compiler are usually not of much interest, we suppress the actual
-# command line using the `at' sign in the first column of the rules
-# and write the string indicating what we do instead.
-%.go : %.cc
- @echo ==============debug========= $(<F)
- @$(CXX) $(CXXFLAGS.g) -c $< -o $@
-%.o : %.cc
- @echo ==============optimized===== $(<F)
- @$(CXX) $(CXXFLAGS) -c $< -o $@
-
-
-# The following statement tells make that the rules `run' and `clean'
-# are not expected to produce files of the same name as Makefile rules
-# usually do.
-.PHONY: run clean
-
-
-# Finally there is a rule which you normally need not care much about:
-# since the executable depends on some include files from the library,
-# besides the C++ application file of course, it is necessary to
-# re-generate the executable when one of the files it depends on has
-# changed. The following rule to created a dependency file
-# `Makefile.dep', which `make' uses to determine when to regenerate
-# the executable. This file is automagically remade whenever needed,
-# i.e. whenever one of the cc-(include-path-base)/baseh-files changed. Make detects whether
-# to remake this file upon inclusion at the bottom of this file.
-#
-# The dependency file is created using a perl script. Since the
-# script prefixes the output names by `lib(include-path-base)/baseo' or `lib(include-path-base)/basego' (it was
-# written for the sublibraries' Makefile), we have to strip that again
-# since object files are placed in the present directory for this
-# application. All these things are made in the next rule:
-Makefile.dep: $(target).cc Makefile \
- $(shell echo $(include-path-base)/base/*.h \
- $(include-path-lac)/lac/*.h \
- $(include-path-deal2)/*/*.h)
- @echo ============================ Remaking Makefile
- @perl $D/common/scripts/make_dependencies.pl $(INCLUDE) $(target).cc \
- | perl -pi -e 's!lib/g?o/!!g;' \
- > Makefile.dep
-
-# To make the dependencies known to `make', we finally have to include
-# them:
-include Makefile.dep
-
-
+++ /dev/null
-/* $Id$ */
-/* Author: Wolfgang Bangerth, University of Heidelberg, 2000 */
-
- // As usual, the first few include
- // files are already known, so we
- // will not comment on them further.
-#include <base/quadrature_lib.h>
-#include <base/function.h>
-#include <base/logstream.h>
-#include <lac/vector.h>
-#include <lac/full_matrix.h>
-#include <lac/sparse_matrix.h>
-#include <lac/solver_cg.h>
-#include <lac/vector_memory.h>
-#include <lac/precondition.h>
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
-#include <grid/grid_generator.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria_boundary_lib.h>
-#include <dofs/dof_accessor.h>
-#include <dofs/dof_tools.h>
-#include <fe/fe_values.h>
-#include <numerics/vectors.h>
-#include <numerics/matrices.h>
-#include <numerics/data_out.h>
-#include <dofs/dof_constraints.h>
-#include <numerics/error_estimator.h>
-
- // In this example, we need
- // vector-valued finite elements. The
- // support for these can be found in
- // the following include file:
-#include <fe/fe_system.h>
- // We will compose the vector-valued
- // finite elements from regular Q1
- // elements which can be found here,
- // as usual:
-#include <fe/fe_lib.lagrange.h>
-
- // This again is C++:
-#include <fstream>
-
-
- // The main class is, except for its
- // name, almost unchanged with
- // respect to the step-6 example. The
- // only change is the use of a
- // different class for the ``fe''
- // variable.
-template <int dim>
-class ElasticProblem
-{
- public:
- ElasticProblem ();
- ~ElasticProblem ();
- void run ();
-
- private:
- void setup_system ();
- void assemble_system ();
- void solve ();
- void refine_grid ();
- void output_results (const unsigned int cycle) const;
-
- Triangulation<dim> triangulation;
- DoFHandler<dim> dof_handler;
-
- // Instead of a concrete finite
- // element class such as
- // ``FEQ1'', we now use a more
- // generic one, ``FESystem''. In
- // fact, it is not a finite
- // element itself, but rather a
- // class that can be used to
- // stack several usual elements
- // together to form one
- // vector-valued finite
- // element. In our case, we will
- // compose the vector-valued
- // element of ``FEQ1'' objects,
- // as shown below in the
- // constructor of this class.
- FESystem<dim> fe;
-
- ConstraintMatrix hanging_node_constraints;
-
- SparsityPattern sparsity_pattern;
- SparseMatrix<double> system_matrix;
-
- Vector<double> solution;
- Vector<double> system_rhs;
-};
-
-
- // Before going over to the
- // implementation of the main class,
- // we declare and define the class
- // which describes the right hand
- // side. This time, the right hand
- // side is vector-valued, as is the
- // solution, so we will describe the
- // new elements in some more detail.
-template <int dim>
-class RightHandSide : public Function<dim>
-{
- public:
- // The first thing is that
- // vector-valued functions have a
- // constructor, since they need
- // to pass down to the base class
- // of how many components the
- // function consists. The default
- // value in the constructor of
- // the base class is one, so we
- // need not define a constructor
- // for the usual scalar function.
- RightHandSide ();
-
- // The next function is a
- // replacement for the ``value''
- // function of the previous
- // examples. There, a second
- // parameter ``component'' was
- // given, which denoted which
- // component was requested. Here,
- // we implement a function that
- // returns the whole vector of
- // values at the given place at
- // once.
- virtual void vector_value (const Point<dim> &p,
- Vector<double> &values) const;
-
- // Then, in analogy to the
- // ``value_list'' function, there
- // is a function
- // ``vector_value_list'', which
- // returns the values of the
- // vector-valued function at
- // several points at once:
- virtual void vector_value_list (const vector<Point<dim> > &points,
- vector<Vector<double> > &value_list) const;
-};
-
-
- // This is the constructor of the
- // right hand side class. As said
- // above, it only passes down to the
- // base class the number of
- // components, which is ``dim'' in
- // the present case. Note that
- // although the implementation is
- // very short here, we do not move it
- // into the class declaration, since
- // our style guides require that
- // inside the class declaration only
- // declarations have to happen and
- // that definitions are always to be
- // found outside.
-template <int dim>
-RightHandSide<dim>::RightHandSide () :
- Function<dim> (dim)
-{};
-
-
- // This is the function that returns
- // the whole vector of values at the
- // point ``p'' at once:
-template <int dim>
-inline
-void RightHandSide<dim>::vector_value (const Point<dim> &p,
- Vector<double> &values) const
-{
- // To prevent cases where the
- // return value has not previously
- // been set to the right size
- // (which is kind of a convention
- // in the deal.II library), we test
- // for this case and otherwise
- // throw an exception:
- Assert (values.size() == dim,
- ExcVectorHasWrongSize (values.size(), dim));
- // Likewise, if by some accident
- // someone tried to compile and run
- // the program in only one space
- // dimension (in which the elastic
- // equations do not make much sense
- // since they reduce to the
- // ordinary Laplace equation), we
- // terminate the program if the
- // dimension is not as expected.
- Assert (dim >= 2, ExcInternalError());
-
- // The rest of the function is as
- // would probably be expected given
- // the form of the right hand side
- // function. First we define the
- // centers of the two points around
- // which are the sources of
- // x-displacement, i.e. (0.5,0) and
- // (-0.5,0). Note that upon
- // construction of the ``Point''
- // objects, all components are set
- // to zero.
- Point<dim> point_1, point_2;
- point_1(0) = 0.5;
- point_2(0) = -0.5;
-
- // If now the point ``p'' is in the
- // circle of radius 0.2 around one
- // of these points, then set the
- // force in x-direction to one,
- // otherwise to zero:
- if (((p-point_1).square() < 0.2*0.2) ||
- ((p-point_2).square() < 0.2*0.2))
- values(0) = 1;
- else
- values(0) = 0;
-
- // Likewise, if ``p'' is in the
- // vicinity of the origin, then set
- // the y-force to 1, otherwise to
- // zero:
- if (p.square() < 0.2*0.2)
- values(1) = 1;
- else
- values(1) = 0;
-};
-
-
-
- // Now, this is the function of the
- // right hand side class that returns
- // the values at several points at
- // once.
-template <int dim>
-void RightHandSide<dim>::vector_value_list (const vector<Point<dim> > &points,
- vector<Vector<double> > &value_list) const
-{
- // First we define an abbreviation
- // for the number of points which
- // we shall work on:
- const unsigned int n_points = points.size();
-
- // Then we check whether the number
- // of output slots has been set
- // correctly, i.e. to the number of
- // input points:
- Assert (value_list.size() == n_points,
- ExcVectorHasWrongSize (value_list.size(), n_points));
-
- // Finally we treat each of the
- // points. In one of the previous
- // examples, we have explained why
- // the
- // ``value_list''/``vector_value_list''
- // function had been introduced: to
- // prevent us from calling virtual
- // functions too frequently. On the
- // other hand, we now need to
- // implement the same function
- // twice, which can lead to
- // confusion if one function is
- // changed but the other is
- // not. However, we can prevent
- // this situation using the
- // following construct:
- for (unsigned int p=0; p<n_points; ++p)
- RightHandSide<dim>::vector_value (points[p],
- value_list[p]);
- // It calls the ``vector_value''
- // function defined above for each
- // point, and thus preempts all
- // chances for inconsistency. It is
- // important to note how the
- // function was called: using the
- // full class qualification using
- // ``RightHandSide::'', since this
- // calls the function directly and
- // not using the virtual function
- // table. The call is thus as fast
- // as a call to any non-virtual
- // function. In addition, we have
- // declared the ``vector_value''
- // function ``inline'', i.e. the
- // compiler can remove the function
- // call altogether and the
- // resulting code can in principle
- // be as fast as if we had
- // duplicated the code.
-};
-
-
-
-
-template <int dim>
-ElasticProblem<dim>::ElasticProblem () :
- dof_handler (triangulation),
- // As said before, we
- // would like to
- // construct one
- // vector-valued
- // finite element as
- // outer product of
- // several scala
- // finite
- // elements. Of
- // course, the number
- // of scalar finite
- // element we would
- // like to stack
- // together equals
- // the number of
- // components the
- // solution function
- // has, which is
- // ``dim'' since we
- // consider
- // displacement in
- // each space
- // direction. The
- // ``FESystem'' class
- // can handle this:
- // we pass it the
- // finite element of
- // which we would
- // like to compose
- // the system of, and
- // how often it shall
- // be repeated:
- fe (FEQ1<dim>(), dim)
- // In fact, the ``FESystem'' class
- // has several more constructors
- // which can perform more complex
- // operations that just stacking
- // together several scalar finite
- // elements of the same type into
- // one; we will get to know these
- // possibilities in later examples.
- //
- // It should be noted that the
- // ``FESystem'' object thus created
- // does not actually use the finite
- // element which we have passed to it
- // as first parameter. We could thus
- // use an anonymous object created
- // in-place. The ``FESystem''
- // constructor only needs the
- // parameter to deduce the type of
- // the finite element from this and
- // then creates objects of the
- // underlying finite element type
- // itself.
-{};
-
-
-
-template <int dim>
-ElasticProblem<dim>::~ElasticProblem ()
-{
- dof_handler.clear ();
-};
-
-
- // Setting up the system of equations
- // is equal to the function used in
- // the step-6 example. The
- // ``DoFHandler'' class and all other
- // classes used take care of the
- // vector-valuedness of the finite
- // element themselves (in fact, the
- // do not do so, since they only take
- // care how many degrees of freedom
- // there are per vertex, line and
- // cell, and they do not askwhat they
- // represent, i.e. whether the finite
- // element under consideration is
- // vector-valued or whether it is,
- // for example, a scalar Hermite
- // element with several degrees of
- // freedom on each vertex).
-template <int dim>
-void ElasticProblem<dim>::setup_system ()
-{
- dof_handler.distribute_dofs (fe);
- hanging_node_constraints.clear ();
- DoFTools::make_hanging_node_constraints (dof_handler,
- hanging_node_constraints);
- hanging_node_constraints.close ();
- sparsity_pattern.reinit (dof_handler.n_dofs(),
- dof_handler.n_dofs(),
- dof_handler.max_couplings_between_dofs());
- // When making the sparsity
- // pattern, there is some potential
- // for optimization if not all
- // components couple to all
- // others. However, this is not the
- // case for the elastic equations,
- // so we use the standard call:
- DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-
- hanging_node_constraints.condense (sparsity_pattern);
-
- sparsity_pattern.compress();
-
- system_matrix.reinit (sparsity_pattern);
-
- solution.reinit (dof_handler.n_dofs());
- system_rhs.reinit (dof_handler.n_dofs());
-};
-
-
- // The big changes in this program
- // are in the creation of matrix and
- // right hand side, since they are
- // problem-dependent. We will go
- // through that process step-by-step,
- // since it is a bit more complicated
- // than in previous examples.
-template <int dim>
-void ElasticProblem<dim>::assemble_system ()
-{
- // First thing: the quadrature
- // formula does not need
- // modification since we still deal
- // with bilinear functions.
- QGauss2<dim> quadrature_formula;
- // Also, the ``FEValues'' objects
- // takes care of everything for us
- // (or better: it does not really
- // so; as in the comment in the
- // function setting up the system,
- // here as well the ``FEValues''
- // object computes the same data on
- // each cell, but it has some
- // functionality to access data
- // stored inside the finite element
- // where they are precomputed upon
- // construction).
- FEValues<dim> fe_values (fe, quadrature_formula,
- UpdateFlags(update_values |
- update_gradients |
- update_q_points |
- update_JxW_values));
-
- // The number of degrees of freedom
- // per cell we now obviously ask
- // from the composed finite element
- // rather than from the underlying
- // scalar Q1 element. Here, it is
- // ``dim'' times the number of
- // degrees of freedom per cell of
- // the Q1 element, but this is not
- // something we need to care about.
- const unsigned int dofs_per_cell = fe.dofs_per_cell;
- const unsigned int n_q_points = quadrature_formula.n_quadrature_points;
-
- FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);
- Vector<double> cell_rhs (dofs_per_cell);
-
- vector<unsigned int> local_dof_indices (dofs_per_cell);
-
- // As was shown in previous
- // examples as well, we need a
- // place where to store the values
- // of the coefficients at all the
- // quadrature points on a cell. In
- // the present situation, we have
- // two coefficients, lambda and mu.
- vector<double> lambda_values (n_q_points);
- vector<double> mu_values (n_q_points);
-
- // Well, we could as well have
- // omitted the above two arrays
- // since we will use constant
- // coefficients for both lambda and
- // mu, which can be declared like
- // this. They both represent
- // functions always returning the
- // constant value 1.0. Although we
- // could omit the respective
- // factors in the assemblage of the
- // matrix, we use them here for
- // purpose of demonstration.
- ConstantFunction<dim> lambda(1.), mu(1.);
-
- // Then again, we need to have the
- // same for the right hand
- // side. This is exactly as before
- // in previous examples. However,
- // we now have a vector-valued
- // right hand side, which is why
- // the data type of the
- // ``rhs_values'' array is
- // changed. We initialize it by
- // ``n_q_points'' elements, each of
- // which is a ``Vector<double>''
- // with ``dim'' elements.
- RightHandSide<dim> right_hand_side;
- vector<Vector<double> > rhs_values (n_q_points,
- Vector<double>(dim));
-
-
- // Now we can begin with the loop
- // over all cells:
- DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(),
- endc = dof_handler.end();
- for (; cell!=endc; ++cell)
- {
- cell_matrix.clear ();
- cell_rhs.clear ();
-
- fe_values.reinit (cell);
-
- // As in previous examples, we
- // define some abbreviations
- // for the various data that
- // the ``FEValues'' class
- // offers:
- const FullMatrix<double>
- & shape_values = fe_values.get_shape_values();
- const vector<vector<Tensor<1,dim> > >
- & shape_grads = fe_values.get_shape_grads();
- const vector<double>
- & JxW_values = fe_values.get_JxW_values();
- const vector<Point<dim> >
- & q_points = fe_values.get_quadrature_points();
-
- // Next we get the values of
- // the coefficients at the
- // quadrature points:
- lambda.value_list (q_points, lambda_values);
- mu.value_list (q_points, mu_values);
-
- // Then assemble the entries of
- // the local stiffness matrix
- // and right hand side
- // vector. This follows almost
- // one-to-one the pattern
- // described in the
- // introduction of this example
- // and will not comment much on
- // this.
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- {
- // One of the few comments
- // in place is how we acces
- // the function ``comp(i)''
- // used in the
- // introduction. This is
- // possible as follows:
- const unsigned int
- component_i = fe.system_to_component_index(i).first;
- // By accessing the
- // ``first'' variable of
- // the return value of the
- // ``system_to_component_index''
- // function, you might
- // already have guessed
- // that there is more in
- // it. In fact, the
- // function returns a
- // ``pair<unsigned int,
- // unsigned int>'', of
- // which the first element
- // is ``comp(i)'' and the
- // second is the value
- // ``base(i)'' also noted
- // in the text. You will
- // rather seldom need to
- // access this second
- // value, but the first is
- // important when using
- // vector valued elements.
-
- for (unsigned int j=0; j<dofs_per_cell; ++j)
- {
- const unsigned int
- component_j = fe.system_to_component_index(j).first;
-
- for (unsigned int q_point=0; q_point<n_q_points;
- ++q_point)
- {
- // Now add up the
- // contribution of
- // this cell to the
- // local matrix:
- cell_matrix(i,j)
- +=
- // This first term is
- // ((lambda+mu) d_i u_i, d_j v_j).
- // Note that
- // ``shape_grads[i][q_point]''
- // returns the
- // gradient of
- // the ith shape
- // function at
- // quadrature
- // point
- // q_point. The
- // component
- // ``comp(i)'',
- // which is the
- // derivative of
- // the ith shape
- // function with
- // respect to the
- // comp(i)th
- // coordinate is
- // accessed by
- // the appended
- // brackets.
- (
- (shape_grads[i][q_point][component_i] *
- shape_grads[j][q_point][component_j] *
- (lambda_values[q_point] +
- mu_values[q_point]))
- +
- // The second term is
- // (mu nabla u_i, nabla v_j).
- // We need not
- // access a
- // specific
- // component of
- // the
- // gradient,
- // since we
- // only have to
- // compute the
- // scalar
- // product of
- // the two
- // gradients,
- // of which an
- // overloaded
- // version of
- // the
- // operator*
- // takes care,
- // as in
- // previous
- // examples.
- //
- // Note that by
- // using the ?:
- // operator, we
- // only do this
- // if comp(i)
- // equals
- // comp(j),
- // otherwise a
- // zero is
- // added (which
- // will be
- // optimized
- // away by the
- // compiler).
- ((component_i == component_j) ?
- (shape_grads[i][q_point] *
- shape_grads[j][q_point] *
- mu_values[q_point]) :
- 0)
- )
- *
- JxW_values[q_point];
- };
- };
- };
-
- // Assembling the right hand
- // side is also just as
- // discussed in the
- // introduction. We will
- // therefore not discuss it
- // further.
- right_hand_side.vector_value_list (q_points, rhs_values);
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- {
- const unsigned int
- component_i = fe.system_to_component_index(i).first;
-
- for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
- cell_rhs(i) += shape_values(i,q_point) *
- rhs_values[q_point](component_i) *
- JxW_values[q_point];
- };
-
- // The transfer from local
- // degrees of freedom into the
- // global matrix and right hand
- // side vector does not depend
- // on the equation under
- // consideration, and is thus
- // the same as in all previous
- // examples.
- cell->get_dof_indices (local_dof_indices);
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- {
- for (unsigned int j=0; j<dofs_per_cell; ++j)
- system_matrix.add (local_dof_indices[i],
- local_dof_indices[j],
- cell_matrix(i,j));
-
- system_rhs(local_dof_indices[i]) += cell_rhs(i);
- };
- };
-
- hanging_node_constraints.condense (system_matrix);
- hanging_node_constraints.condense (system_rhs);
-
- // The interpolation of the
- // boundary values needs a small
- // modification: since the solution
- // function is vector-valued, so
- // needs to be the boundary
- // values. The ``ZeroFunction''
- // constructor accepts a parameter
- // that tells it that it shall
- // represent a vector valued,
- // constant zero function with that
- // many components. By default,
- // this parameter is equal to one,
- // in which case the
- // ``ZeroFunction'' object would
- // represent a scalar
- // function. Since the solution
- // vector has ``dim'' components,
- // we need to pass ``dim'' as
- // number of components to the zero
- // function as well.
- map<unsigned int,double> boundary_values;
- VectorTools::interpolate_boundary_values (dof_handler,
- 0,
- ZeroFunction<dim>(dim),
- boundary_values);
- MatrixTools<dim>::apply_boundary_values (boundary_values,
- system_matrix,
- solution,
- system_rhs);
-};
-
-
-
- // The solver does not care about
- // where the system of equations
- // comes, as long as it stays
- // positive definite and symmetric
- // (which are the requirements for
- // the use of the CG solver), which
- // the system is. Therefore, we need
- // not change anything.
-template <int dim>
-void ElasticProblem<dim>::solve ()
-{
- SolverControl solver_control (1000, 1e-12);
- PrimitiveVectorMemory<> vector_memory;
- SolverCG<> cg (solver_control, vector_memory);
-
- PreconditionRelaxation<>
- preconditioner(system_matrix,
- &SparseMatrix<double>::template precondition_SSOR<double>,
- 1.2);
-
- cg.solve (system_matrix, solution, system_rhs,
- preconditioner);
-
- hanging_node_constraints.distribute (solution);
-};
-
-
-
- // The function that does the
- // refinement of the grid is the same
- // as in the step-6 example. The
- // quadrature formula is adapted to
- // the linear elements again. Note
- // that the error estimator by
- // default adds up the estimated
- // obtained from all components of
- // the finite element solution, that
- // is it uses the displacement in all
- // directions with the same
- // weight. If we would like the grid
- // to be adapted to the
- // x-displacement only, we could pass
- // the function an additional
- // parameter which tells it to do so
- // and do not consider the
- // displacements in all other
- // directions for the error
- // indicators.
-template <int dim>
-void ElasticProblem<dim>::refine_grid ()
-{
- Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
-
- KellyErrorEstimator<dim>::FunctionMap neumann_boundary;
- KellyErrorEstimator<dim>::estimate (dof_handler,
- QGauss2<dim-1>(),
- neumann_boundary,
- solution,
- estimated_error_per_cell);
-
- triangulation.refine_and_coarsen_fixed_number (estimated_error_per_cell,
- 0.3, 0.03);
-
- triangulation.execute_coarsening_and_refinement ();
-};
-
-
- // The output happens mostly as has
- // been shown in previous examples
- // already. The only difference is
- // not that the solution function is
- // vector values. The ``DataOut''
- // class takes care of this
- // automatically, but we have to give
- // each component of the solution
- // vector a different name.
-template <int dim>
-void ElasticProblem<dim>::output_results (const unsigned int cycle) const
-{
- string filename = "solution-";
- filename += ('0' + cycle);
- Assert (cycle < 10, ExcInternalError());
-
- filename += ".gmv";
- ofstream output (filename.c_str());
-
- DataOut<dim> data_out;
- data_out.attach_dof_handler (dof_handler);
-
-
-
- // As said above, we need a
- // different name for each
- // component of the solution
- // function. To pass one name for
- // each component, a vector of
- // strings is used. Since the
- // number of components is the same
- // as the number of dimensions we
- // are working in, the following
- // ``switch'' statement is used.
- //
- // We note that some graphics
- // programs have restriction as to
- // what characters are allowed in
- // the names of variables. The
- // library therefore supports only
- // the minimal subset of these
- // characters that is supported by
- // all programs. Basically, these
- // are letters, numbers,
- // underscores, and some other
- // characters, but in particular no
- // whitespace and minus/hyphen. The
- // library will throw an exception
- // otherwise, at least if in debug
- // mode.
- vector<string> solution_names;
- switch (dim)
- {
- case 1:
- solution_names.push_back ("displacement");
- break;
- case 2:
- solution_names.push_back ("x_displacement");
- solution_names.push_back ("y_displacement");
- break;
- case 3:
- solution_names.push_back ("x_displacement");
- solution_names.push_back ("y_displacement");
- solution_names.push_back ("z_displacement");
- break;
- // It is good style to
- // let the program die if
- // we run upon a case
- // which we did not
- // consider. Remember
- // that the ``Assert''
- // macro throws an
- // exception if the
- // condition in the first
- // parameter is not
- // satisfied. Of course,
- // the condition
- // ``false'' can never be
- // satisfied, so the
- // program will always
- // abort whenever it gets
- // to this statement:
- default:
- Assert (false, ExcInternalError());
- };
-
- // After setting up the names for
- // the different components of the
- // solution vector, we can add the
- // solution vector to the list of
- // data vectors scheduled for
- // output. Note that the following
- // function takes a vector of
- // strings as second argument,
- // whereas the one which we have
- // used in all previous examples
- // accepted a string there. In
- // fact, the latter function is
- // only a shortcut for the function
- // which we call here: it puts the
- // single string that is passed to
- // it into a vector of strings with
- // only one element and forwards
- // that to the other function.
- data_out.add_data_vector (solution, solution_names);
- data_out.build_patches ();
- data_out.write_gmv (output);
-};
-
-
-
-template <int dim>
-void ElasticProblem<dim>::run ()
-{
- for (unsigned int cycle=0; cycle<8; ++cycle)
- {
- cout << "Cycle " << cycle << ':' << endl;
-
- if (cycle == 0)
- {
- // As in previous examples,
- // we use the unit square
- // (or cube) as domain.
- GridGenerator::hyper_cube (triangulation, -1, 1);
- // This time, we have to
- // refine the coarse grid
- // twice before we first
- // solve on it. The reason
- // is the following: we use
- // the ``Gauss2''
- // quadrature formula for
- // integration of the right
- // hand side; that means
- // that there are four
- // quadrature points on
- // each cell (in 2D). If we
- // only refine the initial
- // grid once globally, then
- // there will be only four
- // quadrature points in
- // each direction on the
- // domain. However, the
- // right hand side function
- // was chosen to be rather
- // localized and in that
- // case all quadrature
- // points lie outside the
- // support of the right
- // hand side function. The
- // right hand side vector
- // will then contain only
- // zeroes and the solution
- // of the system of
- // equations is the zero
- // vector, i.e. a finite
- // element function that it
- // zero everywhere. We
- // should not be surprised
- // about such things
- // happening, since we have
- // chosen an initial grid
- // that is totally
- // unsuitable for the
- // problem at hand.
- //
- // The unfortunate thing is
- // that if the discrete
- // solution is constant,
- // then the error
- // indicators computed by
- // the
- // ``KellyErrorEstimator''
- // class are zero for each
- // cell as well, and the
- // call to
- // ``refine_and_coarsen_fixed_number''
- // of the ``triangulation''
- // object will not flag any
- // cells for refinement
- // (why should it if the
- // indicated error is zero
- // for each cell?). The
- // grid in the next
- // iteration will therefore
- // consist of four cells
- // only as well, and the
- // same problem occurs
- // again.
- //
- // The conclusion needs to
- // be: while of course we
- // will not choose the
- // initial grid to be
- // well-suited for the
- // accurate solution of the
- // problem, we must at
- // least choose it such
- // that it has the chance
- // to capture the most
- // striking features of the
- // solution. In this case,
- // it needs to be able to
- // see the right hand
- // side. Thus, we refine
- // twice globally.
- triangulation.refine_global (2);
- }
- else
- refine_grid ();
-
- cout << " Number of active cells: "
- << triangulation.n_active_cells()
- << endl;
-
- setup_system ();
-
- cout << " Number of degrees of freedom: "
- << dof_handler.n_dofs()
- << endl;
-
- assemble_system ();
- solve ();
- output_results (cycle);
- };
-};
-
-
- // The main function is again exactly
- // like in step-6 (apart from the
- // changed class names, of course).
-int main ()
-{
- try
- {
- deallog.depth_console (0);
-
- ElasticProblem<2> elastic_problem_2d;
- elastic_problem_2d.run ();
- }
- catch (exception &exc)
- {
- cerr << endl << endl
- << "----------------------------------------------------"
- << endl;
- cerr << "Exception on processing: " << endl
- << exc.what() << endl
- << "Aborting!" << endl
- << "----------------------------------------------------"
- << endl;
-
- return 1;
- }
- catch (...)
- {
- cerr << endl << endl
- << "----------------------------------------------------"
- << endl;
- cerr << "Unknown exception!" << endl
- << "Aborting!" << endl
- << "----------------------------------------------------"
- << endl;
- return 1;
- };
-
- return 0;
-};