// ---------------------------------------------------------------------
//
-// Copyright (C) 1999 - 2014 by the deal.II authors
+// Copyright (C) 1999 - 2015 by the deal.II authors
//
// This file is part of the deal.II library.
//
* matrices the application of Jacobi or Gauss-Seidel methods is impossible,
* because some diagonal elements are zero in the rows of the Lagrange
* multiplier. The approach of Vanka is to solve a small (usually indefinite)
- * system of equations for each Langrange multiplie variable (we will also
+ * system of equations for each Langrange multiplier variable (we will also
* call the pressure in Stokes' equation a Langrange multiplier since it can
* be interpreted as such).
*
* parameter optimization. The Lagrange multiplier is the third component of
* the finite element used. The system is solved by the GMRES method.
* @code
- * // tag the Lagrange multiplier variable
+ * // tag the Lagrange multiplier variable
* vector<bool> signature(3);
* signature[0] = signature[1] = false;
* signature[2] = true;
*
- * // tag all dofs belonging to the
- * // Lagrange multiplier
+ * // tag all dofs belonging to the Lagrange multiplier
* vector<bool> selected_dofs (dof.n_dofs(), false);
* DoFTools::extract_dofs(dof, signature, p_select);
- * // create the Vanka object
+ * // create the Vanka object
* SparseVanka<double> vanka (global_matrix, selected_dofs);
*
- * // create the solver
- * SolverGMRES<PreconditionedSparseMatrix<double>,
- * Vector<double> > gmres(control,memory,504);
+ * // create the solver
+ * SolverGMRES<> gmres(control,memory,504);
*
- * // solve
+ * // solve
* gmres.solve (global_matrix, solution, right_hand_side,
* vanka);
* @endcode