]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Wrap all instances of conceret functions into a namespace of their own.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Wed, 18 Jul 2001 10:10:38 +0000 (10:10 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Wed, 18 Jul 2001 10:10:38 +0000 (10:10 +0000)
git-svn-id: https://svn.dealii.org/trunk@4850 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/base/include/base/function_lib.h
deal.II/base/source/function_lib.cc
deal.II/doc/news/2001/c-3-1.html

index 10c42f8e52c1fc9012bd13ff414baab104f2c24a..9c08e2ae2571b2a78dfb0b0113e9859a8d272a97 100644 (file)
 
 
 
+/**
+ * Namespace implementing some concrete classes derived from the
+ * @ref{Function} class that describe actual functions. This is rather
+ * a collection of classes that we have needed for our own programs
+ * once and thought they might be useful to others as well at some
+ * point.
+ */
+namespace Functions
+{
+  
+  
 /**
  * The distance to the origin squared.
  *
  *
  * @author: Guido Kanschat, 1999
  */
-template<int dim>
-class SquareFunction : public Function<dim>
-{
-  public:
-                                    /**
-                                     * Function value at one point.
-                                     */
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Function values at multiple points.
-                                     */
-    virtual void value_list (const typename std::vector<Point<dim> > &points,
-                            std::vector<double>            &values,
-                            const unsigned int              component = 0) const;
-
-                                    /**
-                                     * Gradient at one point.
-                                     */
-    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
-                                   const unsigned int  component = 0) const;
-
-                                    /**
-                                       Gradients at multiple points.
-                                    */
-    virtual void gradient_list (const typename std::vector<Point<dim> > &points,
-                               typename std::vector<Tensor<1,dim> >    &gradients,
-                               const unsigned int              component = 0) const;
-
-                                    /**
-                                     * Laplacian of the function at one point.
-                                     */
-    virtual double laplacian (const Point<dim>   &p,
-                             const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Laplacian of the function at multiple points.
-                                     */
-    virtual void laplacian_list (const typename std::vector<Point<dim> > &points,
-                                std::vector<double>            &values,
-                                const unsigned int              component = 0) const;
-};
-
-
-
+  template<int dim>
+  class SquareFunction : public Function<dim>
+  {
+    public:
+                                      /**
+                                       * Function value at one point.
+                                       */
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Function values at multiple points.
+                                       */
+      virtual void value_list (const typename std::vector<Point<dim> > &points,
+                              std::vector<double>            &values,
+                              const unsigned int              component = 0) const;
+      
+                                      /**
+                                       * Gradient at one point.
+                                       */
+      virtual Tensor<1,dim> gradient (const Point<dim>   &p,
+                                     const unsigned int  component = 0) const;
+      
+                                      /**
+                                         Gradients at multiple points.
+                                      */
+      virtual void gradient_list (const typename std::vector<Point<dim> > &points,
+                                 typename std::vector<Tensor<1,dim> >    &gradients,
+                                 const unsigned int              component = 0) const;
+      
+                                      /**
+                                       * Laplacian of the function at one point.
+                                       */
+      virtual double laplacian (const Point<dim>   &p,
+                               const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Laplacian of the function at multiple points.
+                                       */
+      virtual void laplacian_list (const typename std::vector<Point<dim> > &points,
+                                  std::vector<double>            &values,
+                                  const unsigned int              component = 0) const;
+  };
+  
+  
+  
 /**
  * The function @p{xy}. This function serves as an example for
  * a vanishing Laplacian.
  *
  * @author: Guido Kanschat, 2000
  */
-template<int dim>
-class Q1WedgeFunction : public Function<dim>
-{
-  public:
-                                    /**
-                                     * Function value at one point.
-                                     */
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Function values at multiple points.
-                                     */
-    virtual void value_list (const typename std::vector<Point<dim> > &points,
-                            std::vector<double>            &values,
-                            const unsigned int              component = 0) const;
-
-                                    /**
-                                     * Gradient at one point.
-                                     */
-    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
-                                   const unsigned int       component = 0) const;
-
-                                    /**
-                                       Gradients at multiple points.
-                                    */
-    virtual void gradient_list (const typename std::vector<Point<dim> > &points,
-                               typename std::vector<Tensor<1,dim> >    &gradients,
-                               const unsigned int              component = 0) const;
-     
-                                    /**
-                                     * Laplacian of the function at one point.
-                                     */
-    virtual double laplacian (const Point<dim>   &p,
-                             const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Laplacian of the function at multiple points.
-                                     */
-    virtual void laplacian_list (const typename std::vector<Point<dim> > &points,
-                                std::vector<double>            &values,
-                                const unsigned int              component = 0) const;
-};
-
-
-
+  template<int dim>
+  class Q1WedgeFunction : public Function<dim>
+  {
+    public:
+                                      /**
+                                       * Function value at one point.
+                                       */
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Function values at multiple points.
+                                       */
+      virtual void value_list (const typename std::vector<Point<dim> > &points,
+                              std::vector<double>            &values,
+                              const unsigned int              component = 0) const;
+      
+                                      /**
+                                       * Gradient at one point.
+                                       */
+      virtual Tensor<1,dim> gradient (const Point<dim>   &p,
+                                     const unsigned int       component = 0) const;
+      
+                                      /**
+                                         Gradients at multiple points.
+                                      */
+      virtual void gradient_list (const typename std::vector<Point<dim> > &points,
+                                 typename std::vector<Tensor<1,dim> >    &gradients,
+                                 const unsigned int              component = 0) const;
+      
+                                      /**
+                                       * Laplacian of the function at one point.
+                                       */
+      virtual double laplacian (const Point<dim>   &p,
+                               const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Laplacian of the function at multiple points.
+                                       */
+      virtual void laplacian_list (const typename std::vector<Point<dim> > &points,
+                                  std::vector<double>            &values,
+                                  const unsigned int              component = 0) const;
+  };
+  
+  
+  
 /**
  * d-quadratic pillow on the unit hypercube.
  *
@@ -139,176 +150,176 @@ class Q1WedgeFunction : public Function<dim>
  *
  * @author: Guido Kanschat, 1999
  */
-template<int dim>
-class PillowFunction : public Function<dim>
-{
-  public:
-                                    /**
-                                     * Constructor. Provide a
-                                     * constant that will be added to
-                                     * each function value.
-                                     */
-    PillowFunction (const double offset=0.);
-
-                                    /**
-                                     * The value at a single point.
-                                     */
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Values at multiple points.
-                                     */
-    virtual void value_list (const typename std::vector<Point<dim> > &points,
-                            std::vector<double>            &values,
-                            const unsigned int              component = 0) const;
-
-                                    /**
-                                     * Gradient at a single point.
-                                     */
-    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
-                                   const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Gradients at multiple points.
-                                     */
-    virtual void gradient_list (const typename std::vector<Point<dim> > &points,
-                               typename std::vector<Tensor<1,dim> >    &gradients,
-                               const unsigned int              component = 0) const;
-
-                                    /**
-                                     * Laplacian at a single point.
-                                     */
-    virtual double laplacian (const Point<dim>   &p,
-                             const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Laplacian at multiple points.
-                                     */
-    virtual void laplacian_list (const typename std::vector<Point<dim> > &points,
-                                std::vector<double>            &values,
-                                const unsigned int              component = 0) const;
-  private:
-    const double offset;
-};
-
-
-
+  template<int dim>
+  class PillowFunction : public Function<dim>
+  {
+    public:
+                                      /**
+                                       * Constructor. Provide a
+                                       * constant that will be added to
+                                       * each function value.
+                                       */
+      PillowFunction (const double offset=0.);
+      
+                                      /**
+                                       * The value at a single point.
+                                       */
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Values at multiple points.
+                                       */
+      virtual void value_list (const typename std::vector<Point<dim> > &points,
+                              std::vector<double>            &values,
+                              const unsigned int              component = 0) const;
+      
+                                      /**
+                                       * Gradient at a single point.
+                                       */
+      virtual Tensor<1,dim> gradient (const Point<dim>   &p,
+                                     const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Gradients at multiple points.
+                                       */
+      virtual void gradient_list (const typename std::vector<Point<dim> > &points,
+                                 typename std::vector<Tensor<1,dim> >    &gradients,
+                                 const unsigned int              component = 0) const;
+      
+                                      /**
+                                       * Laplacian at a single point.
+                                       */
+      virtual double laplacian (const Point<dim>   &p,
+                               const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Laplacian at multiple points.
+                                       */
+      virtual void laplacian_list (const typename std::vector<Point<dim> > &points,
+                                  std::vector<double>            &values,
+                                  const unsigned int              component = 0) const;
+    private:
+      const double offset;
+  };
+  
+  
+  
 /**
  * Cosine-shaped pillow function.
  * This is another function with zero boundary values on $[-1,1]^d$. In the interior
  * it is the product of $\cos(\pi/2 x_i)$.
  * @author Guido Kanschat, 1999
  */
-template<int dim>
-class CosineFunction : public Function<dim>
-{
-  public:
-                                    /**
-                                     * The value at a single point.
-                                     */
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Values at multiple points.
-                                     */
-    virtual void value_list (const typename std::vector<Point<dim> > &points,
-                            std::vector<double>            &values,
-                            const unsigned int              component = 0) const;
-
-                                    /**
-                                     * Gradient at a single point.
-                                     */
-    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
-                                   const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Gradients at multiple points.
-                                     */
-    virtual void gradient_list (const typename std::vector<Point<dim> > &points,
-                               typename std::vector<Tensor<1,dim> >    &gradients,
-                               const unsigned int              component = 0) const;
-
-                                    /**
-                                     * Laplacian at a single point.
-                                     */
-    virtual double laplacian (const Point<dim>   &p,
-                             const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Laplacian at multiple points.
-                                     */
-    virtual void laplacian_list (const typename std::vector<Point<dim> > &points,
-                                std::vector<double>            &values,
-                                const unsigned int              component = 0) const;
-
-                                    /**
-                                     * Gradient at a single point.
-                                     */
-    virtual Tensor<2,dim> hessian (const Point<dim>   &p,
-                                  const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Gradients at multiple points.
-                                     */
-    virtual void hessian_list (const typename std::vector<Point<dim> > &points,
-                              typename std::vector<Tensor<2,dim> >    &hessians,
+  template<int dim>
+  class CosineFunction : public Function<dim>
+  {
+    public:
+                                      /**
+                                       * The value at a single point.
+                                       */
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Values at multiple points.
+                                       */
+      virtual void value_list (const typename std::vector<Point<dim> > &points,
+                              std::vector<double>            &values,
                               const unsigned int              component = 0) const;
-};
-
-
-
+      
+                                      /**
+                                       * Gradient at a single point.
+                                       */
+      virtual Tensor<1,dim> gradient (const Point<dim>   &p,
+                                     const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Gradients at multiple points.
+                                       */
+      virtual void gradient_list (const typename std::vector<Point<dim> > &points,
+                                 typename std::vector<Tensor<1,dim> >    &gradients,
+                                 const unsigned int              component = 0) const;
+      
+                                      /**
+                                       * Laplacian at a single point.
+                                       */
+      virtual double laplacian (const Point<dim>   &p,
+                               const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Laplacian at multiple points.
+                                       */
+      virtual void laplacian_list (const typename std::vector<Point<dim> > &points,
+                                  std::vector<double>            &values,
+                                  const unsigned int              component = 0) const;
+      
+                                      /**
+                                       * Gradient at a single point.
+                                       */
+      virtual Tensor<2,dim> hessian (const Point<dim>   &p,
+                                    const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Gradients at multiple points.
+                                       */
+      virtual void hessian_list (const typename std::vector<Point<dim> > &points,
+                                typename std::vector<Tensor<2,dim> >    &hessians,
+                                const unsigned int              component = 0) const;
+  };
+  
+  
+  
 /**
  * Product of exponential functions in each coordinate direction.
  * @author Guido Kanschat, 1999
  */
-template<int dim>
-class ExpFunction : public Function<dim>
-{
-  public:
-                                    /**
-                                     * The value at a single point.
-                                     */
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Values at multiple points.
-                                     */
-    virtual void value_list (const typename std::vector<Point<dim> > &points,
-                            std::vector<double>            &values,
-                            const unsigned int              component = 0) const;
-
-                                    /**
-                                     * Gradient at a single point.
-                                     */
-    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
-                                   const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Gradients at multiple points.
-                                     */
-    virtual void gradient_list (const typename std::vector<Point<dim> > &points,
-                               typename std::vector<Tensor<1,dim> >    &gradients,
-                               const unsigned int              component = 0) const;
-
-                                    /**
-                                     * Laplacian at a single point.
-                                     */
-    virtual double laplacian (const Point<dim>   &p,
-                             const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Laplacian at multiple points.
-                                     */
-    virtual void laplacian_list (const typename std::vector<Point<dim> > &points,
-                                std::vector<double>            &values,
-                                const unsigned int              component = 0) const;
-};
-
-
-
+  template<int dim>
+  class ExpFunction : public Function<dim>
+  {
+    public:
+                                      /**
+                                       * The value at a single point.
+                                       */
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Values at multiple points.
+                                       */
+      virtual void value_list (const typename std::vector<Point<dim> > &points,
+                              std::vector<double>            &values,
+                              const unsigned int              component = 0) const;
+      
+                                      /**
+                                       * Gradient at a single point.
+                                       */
+      virtual Tensor<1,dim> gradient (const Point<dim>   &p,
+                                     const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Gradients at multiple points.
+                                       */
+      virtual void gradient_list (const typename std::vector<Point<dim> > &points,
+                                 typename std::vector<Tensor<1,dim> >    &gradients,
+                                 const unsigned int              component = 0) const;
+      
+                                      /**
+                                       * Laplacian at a single point.
+                                       */
+      virtual double laplacian (const Point<dim>   &p,
+                               const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Laplacian at multiple points.
+                                       */
+      virtual void laplacian_list (const typename std::vector<Point<dim> > &points,
+                                  std::vector<double>            &values,
+                                  const unsigned int              component = 0) const;
+  };
+  
+  
+  
 /**
  * Singularity on the L-shaped domain in 2D.
  *
@@ -316,51 +327,51 @@ class ExpFunction : public Function<dim>
  *
  * @author Guido Kanschat, 1999
  */
-class LSingularityFunction : public Function<2>
-{
-  public:
-                                    /**
-                                     * The value at a single point.
-                                     */
-    virtual double value (const Point<2>   &p,
-                         const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Values at multiple points.
-                                     */
-    virtual void value_list (const std::vector<Point<2> > &points,
-                            std::vector<double>            &values,
-                            const unsigned int              component = 0) const;
-
-                                    /**
-                                     * Gradient at a single point.
-                                     */
-    virtual Tensor<1,2> gradient (const Point<2>     &p,
-                                 const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Gradients at multiple points.
-                                     */
-    virtual void gradient_list (const std::vector<Point<2> > &points,
-                               std::vector<Tensor<1,2> >    &gradients,
-                               const unsigned int            component = 0) const;
-
-                                    /**
-                                     * Laplacian at a single point.
-                                     */
-    virtual double laplacian (const Point<2>   &p,
-                             const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Laplacian at multiple points.
-                                     */
-    virtual void laplacian_list (const std::vector<Point<2> > &points,
-                                std::vector<double>          &values,
-                                const unsigned int            component = 0) const;
-};
-
-
-
+  class LSingularityFunction : public Function<2>
+  {
+    public:
+                                      /**
+                                       * The value at a single point.
+                                       */
+      virtual double value (const Point<2>   &p,
+                           const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Values at multiple points.
+                                       */
+      virtual void value_list (const std::vector<Point<2> > &points,
+                              std::vector<double>            &values,
+                              const unsigned int              component = 0) const;
+      
+                                      /**
+                                       * Gradient at a single point.
+                                       */
+      virtual Tensor<1,2> gradient (const Point<2>     &p,
+                                   const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Gradients at multiple points.
+                                       */
+      virtual void gradient_list (const std::vector<Point<2> > &points,
+                                 std::vector<Tensor<1,2> >    &gradients,
+                                 const unsigned int            component = 0) const;
+      
+                                      /**
+                                       * Laplacian at a single point.
+                                       */
+      virtual double laplacian (const Point<2>   &p,
+                               const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Laplacian at multiple points.
+                                       */
+      virtual void laplacian_list (const std::vector<Point<2> > &points,
+                                  std::vector<double>          &values,
+                                  const unsigned int            component = 0) const;
+  };
+  
+  
+  
 /**
  * Singularity on the slit domain in 2D.
  *
@@ -368,50 +379,50 @@ class LSingularityFunction : public Function<2>
  *
  * @author Guido Kanschat, 1999
  */
-class SlitSingularityFunction : public Function<2>
-{
-  public:
-                                    /**
-                                     * The value at a single point.
-                                     */
-    virtual double value (const Point<2>   &p,
-                         const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Values at multiple points.
-                                     */
-    virtual void value_list (const std::vector<Point<2> > &points,
-                            std::vector<double>            &values,
-                            const unsigned int              component = 0) const;
-
-                                    /**
-                                     * Gradient at a single point.
-                                     */
-    virtual Tensor<1,2> gradient (const Point<2>   &p,
-                                 const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Gradients at multiple points.
-                                     */
-    virtual void gradient_list (const std::vector<Point<2> > &points,
-                               std::vector<Tensor<1,2> >    &gradients,
-                               const unsigned int            component = 0) const;
-
-                                    /**
-                                     * Laplacian at a single point.
-                                     */
-    virtual double laplacian (const Point<2>   &p,
-                             const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Laplacian at multiple points.
-                                     */
-    virtual void laplacian_list (const std::vector<Point<2> > &points,
-                                std::vector<double>          &values,
-                                const unsigned int            component = 0) const;
-};
-
-
+  class SlitSingularityFunction : public Function<2>
+  {
+    public:
+                                      /**
+                                       * The value at a single point.
+                                       */
+      virtual double value (const Point<2>   &p,
+                           const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Values at multiple points.
+                                       */
+      virtual void value_list (const std::vector<Point<2> > &points,
+                              std::vector<double>            &values,
+                              const unsigned int              component = 0) const;
+      
+                                      /**
+                                       * Gradient at a single point.
+                                       */
+      virtual Tensor<1,2> gradient (const Point<2>   &p,
+                                   const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Gradients at multiple points.
+                                       */
+      virtual void gradient_list (const std::vector<Point<2> > &points,
+                                 std::vector<Tensor<1,2> >    &gradients,
+                                 const unsigned int            component = 0) const;
+      
+                                      /**
+                                       * Laplacian at a single point.
+                                       */
+      virtual double laplacian (const Point<2>   &p,
+                               const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Laplacian at multiple points.
+                                       */
+      virtual void laplacian_list (const std::vector<Point<2> > &points,
+                                  std::vector<double>          &values,
+                                  const unsigned int            component = 0) const;
+  };
+  
+  
 /**
  * A jump in x-direction transported into some direction.
  *
@@ -426,105 +437,105 @@ class SlitSingularityFunction : public Function<2>
  *
  * @author: Guido Kanschat, 2000
  */
-template<int dim>
-class JumpFunction : public Function<dim>
-{
-  public:
-                                    /**
-                                     * Constructor. Provide the
-                                     * advection direction here and
-                                     * the steepness of the slope.
-                                     */
-    JumpFunction (const Point<dim> &direction,
-                 const double      steepness);
-    
-                                    /**
-                                     * Function value at one point.
-                                     */
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Function values at multiple points.
-                                     */
-    virtual void value_list (const typename std::vector<Point<dim> > &points,
-                            std::vector<double>            &values,
-                            const unsigned int              component = 0) const;
-
-                                    /**
-                                     * Gradient at one point.
-                                     */
-    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
-                                   const unsigned int  component = 0) const;
-
-                                    /**
-                                       Gradients at multiple points.
-                                    */
-    virtual void gradient_list (const typename std::vector<Point<dim> > &points,
-                               typename std::vector<Tensor<1,dim> >    &gradients,
-                               const unsigned int              component = 0) const;
-
-                                    /**
-                                     * Laplacian of the function at one point.
-                                     */
-    virtual double laplacian (const Point<dim>   &p,
-                             const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Laplacian of the function at multiple points.
-                                     */
-    virtual void laplacian_list (const typename std::vector<Point<dim> > &points,
-                                std::vector<double>            &values,
-                                const unsigned int              component = 0) const;
-
-                                    /**
-                                     * Determine an estimate for
-                                     * the memory consumption (in
-                                     * bytes) of this
-                                     * object. Since sometimes
-                                     * the size of objects can
-                                     * not be determined exactly
-                                     * (for example: what is the
-                                     * memory consumption of an
-                                     * STL @p{std::map} type with a
-                                     * certain number of
-                                     * elements?), this is only
-                                     * an estimate. however often
-                                     * quite close to the true
-                                     * value.
-                                     */
-    unsigned int memory_consumption () const;
-
-  protected:
-                                    /**
-                                     * Advection vector.
-                                     */
-    const Point<dim> direction;
-
-                                    /**
-                                     * Steepness (maximal derivative)
-                                     * of the slope.
-                                     */
-    const double steepness;
-
-                                    /**
-                                     * Advection angle.
-                                     */
-    double angle;
-
-                                    /**
-                                     * Sine of @p{angle}.
-                                     */
-    double sine;
-
-                                    /**
-                                     * Cosine of @p{angle}.
-                                     */
-    double cosine;
-};
-
-
-
+  template<int dim>
+  class JumpFunction : public Function<dim>
+  {
+    public:
+                                      /**
+                                       * Constructor. Provide the
+                                       * advection direction here and
+                                       * the steepness of the slope.
+                                       */
+      JumpFunction (const Point<dim> &direction,
+                   const double      steepness);
+      
+                                      /**
+                                       * Function value at one point.
+                                       */
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Function values at multiple points.
+                                       */
+      virtual void value_list (const typename std::vector<Point<dim> > &points,
+                              std::vector<double>            &values,
+                              const unsigned int              component = 0) const;
+      
+                                      /**
+                                       * Gradient at one point.
+                                       */
+      virtual Tensor<1,dim> gradient (const Point<dim>   &p,
+                                     const unsigned int  component = 0) const;
+      
+                                      /**
+                                         Gradients at multiple points.
+                                      */
+      virtual void gradient_list (const typename std::vector<Point<dim> > &points,
+                                 typename std::vector<Tensor<1,dim> >    &gradients,
+                                 const unsigned int              component = 0) const;
+      
+                                      /**
+                                       * Laplacian of the function at one point.
+                                       */
+      virtual double laplacian (const Point<dim>   &p,
+                               const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Laplacian of the function at multiple points.
+                                       */
+      virtual void laplacian_list (const typename std::vector<Point<dim> > &points,
+                                  std::vector<double>            &values,
+                                  const unsigned int              component = 0) const;
+      
+                                      /**
+                                       * Determine an estimate for
+                                       * the memory consumption (in
+                                       * bytes) of this
+                                       * object. Since sometimes
+                                       * the size of objects can
+                                       * not be determined exactly
+                                       * (for example: what is the
+                                       * memory consumption of an
+                                       * STL @p{std::map} type with a
+                                       * certain number of
+                                       * elements?), this is only
+                                       * an estimate. however often
+                                       * quite close to the true
+                                       * value.
+                                       */
+      unsigned int memory_consumption () const;
+      
+    protected:
+                                      /**
+                                       * Advection vector.
+                                       */
+      const Point<dim> direction;
+      
+                                      /**
+                                       * Steepness (maximal derivative)
+                                       * of the slope.
+                                       */
+      const double steepness;
+      
+                                      /**
+                                       * Advection angle.
+                                       */
+      double angle;
+      
+                                      /**
+                                       * Sine of @p{angle}.
+                                       */
+      double sine;
+      
+                                      /**
+                                       * Cosine of @p{angle}.
+                                       */
+      double cosine;
+  };
+  
+  
+  
 /**
  * Given a wavenumber vector generate a cosine function. The
  * wavenumber coefficient is given as a @p{d}-dimensional point @p{k}
@@ -536,54 +547,54 @@ class JumpFunction : public Function<dim>
  *
  * @author Wolfgang Bangerth, 2001
  */
-template <int dim>
-class FourierCosineFunction : public Function<dim> 
-{
-  public:
-                                    /**
-                                     * Constructor. Take the Fourier
-                                     * coefficients in each space
-                                     * direction as argument.
-                                     */
-    FourierCosineFunction (const Point<dim> &fourier_coefficients);
-    
-                                    /**
-                                     * Return the value of the
-                                     * function at the given
-                                     * point. Unless there is only
-                                     * one component (i.e. the
-                                     * function is scalar), you
-                                     * should state the component you
-                                     * want to have evaluated; it
-                                     * defaults to zero, i.e. the
-                                     * first component.
-                                     */
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Return the gradient of the
-                                     * specified component of the
-                                     * function at the given point.
-                                     */
-    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
-                                   const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Compute the Laplacian of a
-                                     * given component at point @p{p}.
-                                     */
-    virtual double laplacian (const Point<dim>   &p,
-                             const unsigned int  component = 0) const;
-  private:
-                                    /**
-                                     * Stored Fourier coefficients.
-                                     */
-    const Point<dim> fourier_coefficients;
-};
-
-
-
+  template <int dim>
+  class FourierCosineFunction : public Function<dim> 
+  {
+    public:
+                                      /**
+                                       * Constructor. Take the Fourier
+                                       * coefficients in each space
+                                       * direction as argument.
+                                       */
+      FourierCosineFunction (const Point<dim> &fourier_coefficients);
+      
+                                      /**
+                                       * Return the value of the
+                                       * function at the given
+                                       * point. Unless there is only
+                                       * one component (i.e. the
+                                       * function is scalar), you
+                                       * should state the component you
+                                       * want to have evaluated; it
+                                       * defaults to zero, i.e. the
+                                       * first component.
+                                       */
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Return the gradient of the
+                                       * specified component of the
+                                       * function at the given point.
+                                       */
+      virtual Tensor<1,dim> gradient (const Point<dim>   &p,
+                                     const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Compute the Laplacian of a
+                                       * given component at point @p{p}.
+                                       */
+      virtual double laplacian (const Point<dim>   &p,
+                               const unsigned int  component = 0) const;
+    private:
+                                      /**
+                                       * Stored Fourier coefficients.
+                                       */
+      const Point<dim> fourier_coefficients;
+  };
+  
+  
+  
 /**
  * Given a wavenumber vector generate a sine function. The
  * wavenumber coefficient is given as a @p{d}-dimensional point @p{k}
@@ -595,53 +606,54 @@ class FourierCosineFunction : public Function<dim>
  *
  * @author Wolfgang Bangerth, 2001
  */
-template <int dim>
-class FourierSineFunction : public Function<dim> 
-{
-  public:
-                                    /**
-                                     * Constructor. Take the Fourier
-                                     * coefficients in each space
-                                     * direction as argument.
-                                     */
-    FourierSineFunction (const Point<dim> &fourier_coefficients);
-    
-                                    /**
-                                     * Return the value of the
-                                     * function at the given
-                                     * point. Unless there is only
-                                     * one component (i.e. the
-                                     * function is scalar), you
-                                     * should state the component you
-                                     * want to have evaluated; it
-                                     * defaults to zero, i.e. the
-                                     * first component.
-                                     */
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Return the gradient of the
-                                     * specified component of the
-                                     * function at the given point.
-                                     */
-    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
-                                   const unsigned int  component = 0) const;
-
-                                    /**
-                                     * Compute the Laplacian of a
-                                     * given component at point @p{p}.
-                                     */
-    virtual double laplacian (const Point<dim>   &p,
-                             const unsigned int  component = 0) const;
-  private:
-                                    /**
-                                     * Stored Fourier coefficients.
-                                     */
-    const Point<dim> fourier_coefficients;
+  template <int dim>
+  class FourierSineFunction : public Function<dim> 
+  {
+    public:
+                                      /**
+                                       * Constructor. Take the Fourier
+                                       * coefficients in each space
+                                       * direction as argument.
+                                       */
+      FourierSineFunction (const Point<dim> &fourier_coefficients);
+      
+                                      /**
+                                       * Return the value of the
+                                       * function at the given
+                                       * point. Unless there is only
+                                       * one component (i.e. the
+                                       * function is scalar), you
+                                       * should state the component you
+                                       * want to have evaluated; it
+                                       * defaults to zero, i.e. the
+                                       * first component.
+                                       */
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Return the gradient of the
+                                       * specified component of the
+                                       * function at the given point.
+                                       */
+      virtual Tensor<1,dim> gradient (const Point<dim>   &p,
+                                     const unsigned int  component = 0) const;
+      
+                                      /**
+                                       * Compute the Laplacian of a
+                                       * given component at point @p{p}.
+                                       */
+      virtual double laplacian (const Point<dim>   &p,
+                               const unsigned int  component = 0) const;
+    private:
+                                      /**
+                                       * Stored Fourier coefficients.
+                                       */
+      const Point<dim> fourier_coefficients;
+  };
+  
+  
 };
 
 
-
-
 #endif
index 5da39ec8f9dd40dd466b29f9223ebbaf1cfce83e..042e0362dfd86478353e841387662c4be16e970f 100644 (file)
 
 
 
-template<int dim>
-double
-SquareFunction<dim>::value (const Point<dim>   &p,
-                           const unsigned int) const
+namespace Functions
 {
-  return p.square();
-}
-
-
+  
+  
+  template<int dim>
+  double
+  SquareFunction<dim>::value (const Point<dim>   &p,
+                             const unsigned int) const
+  {
+    return p.square();
+  }
+  
+  
 // if necessary try to work around a bug in the IBM xlC compiler
 #ifdef XLC_WORK_AROUND_STD_BUG
-using namespace std;
+  using namespace std;
 #endif
-
-template<int dim>
-void
-SquareFunction<dim>::value_list (const typename std::vector<Point<dim> > &points,
-                                std::vector<double>            &values,
+  
+  template<int dim>
+  void
+  SquareFunction<dim>::value_list (const typename std::vector<Point<dim> > &points,
+                                  std::vector<double>            &values,
+                                  const unsigned int) const
+  {
+    Assert (values.size() == points.size(),
+           ExcDimensionMismatch(values.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      {
+       const Point<dim>& p = points[i];
+       values[i] = p.square();
+      }
+  }
+  
+  
+  template<int dim>
+  double
+  SquareFunction<dim>::laplacian (const Point<dim>   &,
+                                 const unsigned int) const
+  {
+    return 2*dim;
+  }
+  
+  
+  template<int dim>
+  void
+  SquareFunction<dim>::laplacian_list (const typename std::vector<Point<dim> > &points,
+                                      std::vector<double>            &values,
+                                      const unsigned int) const
+  {
+    Assert (values.size() == points.size(),
+           ExcDimensionMismatch(values.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      values[i] = 2*dim;
+  }
+  
+  
+  
+  template<int dim>
+  Tensor<1,dim>
+  SquareFunction<dim>::gradient (const Point<dim>   &p,
                                 const unsigned int) const
-{
-  Assert (values.size() == points.size(),
-         ExcDimensionMismatch(values.size(), points.size()));
-
-  for (unsigned int i=0;i<points.size();++i)
-    {
-      const Point<dim>& p = points[i];
-      values[i] = p.square();
-    }
-}
-
-
-template<int dim>
-double
-SquareFunction<dim>::laplacian (const Point<dim>   &,
-                               const unsigned int) const
-{
-  return 2*dim;
-}
-
-
-template<int dim>
-void
-SquareFunction<dim>::laplacian_list (const typename std::vector<Point<dim> > &points,
-                                    std::vector<double>            &values,
-                                    const unsigned int) const
-{
-  Assert (values.size() == points.size(),
-         ExcDimensionMismatch(values.size(), points.size()));
-
-  for (unsigned int i=0;i<points.size();++i)
-    values[i] = 2*dim;
-}
-
-
-
-template<int dim>
-Tensor<1,dim>
-SquareFunction<dim>::gradient (const Point<dim>   &p,
+  {
+    return p*2;
+  }
+  
+  
+  
+  template<int dim>
+  void
+  SquareFunction<dim>::gradient_list (const typename std::vector<Point<dim> > &points,
+                                     typename std::vector<Tensor<1,dim> >    &gradients,
+                                     const unsigned int) const
+  {
+    Assert (gradients.size() == points.size(),
+           ExcDimensionMismatch(gradients.size(), points.size()));
+    
+    for (unsigned int i=0; i<points.size(); ++i)
+      gradients[i] = points[i]*2;
+  }
+  
+  
+//////////////////////////////////////////////////////////////////////
+  
+  
+  template<int dim>
+  double
+  Q1WedgeFunction<dim>::value (const Point<dim>   &p,
                               const unsigned int) const
-{
-  return p*2;
-}
-
-
-
-template<int dim>
-void
-SquareFunction<dim>::gradient_list (const typename std::vector<Point<dim> > &points,
-                                   typename std::vector<Tensor<1,dim> >    &gradients,
+  {
+    return p(0)*p(1);
+  }
+  
+  
+  
+  template<int dim>
+  void
+  Q1WedgeFunction<dim>::value_list (const typename std::vector<Point<dim> > &points,
+                                   std::vector<double>            &values,
                                    const unsigned int) const
-{
-  Assert (gradients.size() == points.size(),
-         ExcDimensionMismatch(gradients.size(), points.size()));
-
-  for (unsigned int i=0; i<points.size(); ++i)
-    gradients[i] = points[i]*2;
-}
-
-
+  {
+    Assert (values.size() == points.size(),
+           ExcDimensionMismatch(values.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      {
+       const Point<dim>& p = points[i];
+       values[i] = p(0)*p(1);
+      }
+  }
+  
+  
+  template<int dim>
+  double
+  Q1WedgeFunction<dim>::laplacian (const Point<dim>   &,
+                                  const unsigned int) const
+  {
+    return 0.;
+  }
+  
+  
+  template<int dim>
+  void
+  Q1WedgeFunction<dim>::laplacian_list (const typename std::vector<Point<dim> > &points,
+                                       std::vector<double>            &values,
+                                       const unsigned int) const
+  {
+    Assert (values.size() == points.size(),
+           ExcDimensionMismatch(values.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      values[i] = 0.;
+  }
+  
+  
+  
+  template<int dim>
+  Tensor<1,dim>
+  Q1WedgeFunction<dim>::gradient (const Point<dim>   &p,
+                                 const unsigned int) const
+  {
+    Tensor<1,dim> erg;
+    erg[0] = p(1);
+    erg[1] = p(0);
+    return erg;
+  }
+  
+  
+  
+  template<int dim>
+  void
+  Q1WedgeFunction<dim>::gradient_list (const typename std::vector<Point<dim> > &points,
+                                      typename std::vector<Tensor<1,dim> >    &gradients,
+                                      const unsigned int) const
+  {
+    Assert (gradients.size() == points.size(),
+           ExcDimensionMismatch(gradients.size(), points.size()));
+    
+    for (unsigned int i=0; i<points.size(); ++i)
+      {
+       gradients[i][0] = points[i](1);
+       gradients[i][1] = points[i](0);
+      }
+  }
+  
+  
 //////////////////////////////////////////////////////////////////////
-
-
-template<int dim>
-double
-Q1WedgeFunction<dim>::value (const Point<dim>   &p,
-                            const unsigned int) const
-{
-  return p(0)*p(1);
-}
-
-
-
-template<int dim>
-void
-Q1WedgeFunction<dim>::value_list (const typename std::vector<Point<dim> > &points,
-                                 std::vector<double>            &values,
+  
+  
+  template<int dim>
+  PillowFunction<dim>::PillowFunction (const double offset)
+                 :
+                 offset(offset)
+  {}
+  
+  
+  template<int dim>
+  double
+  PillowFunction<dim>::value (const Point<dim>   &p,
+                             const unsigned int) const
+  {
+    switch(dim)
+      {
+       case 1:
+             return 1.-p(0)*p(0)+offset;
+       case 2:
+             return (1.-p(0)*p(0))*(1.-p(1)*p(1))+offset;
+       case 3:
+             return (1.-p(0)*p(0))*(1.-p(1)*p(1))*(1.-p(2)*p(2))+offset;
+       default:
+             Assert(false, ExcNotImplemented());
+      }
+    return 0.;
+  }
+  
+  template<int dim>
+  void
+  PillowFunction<dim>::value_list (const typename std::vector<Point<dim> > &points,
+                                  std::vector<double>            &values,
+                                  const unsigned int) const
+  {
+    Assert (values.size() == points.size(),
+           ExcDimensionMismatch(values.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      {
+       const Point<dim>& p = points[i];
+       switch(dim)
+         {
+           case 1:
+                 values[i] = 1.-p(0)*p(0)+offset;
+                 break;
+           case 2:
+                 values[i] = (1.-p(0)*p(0))*(1.-p(1)*p(1))+offset;
+                 break;
+           case 3:
+                 values[i] = (1.-p(0)*p(0))*(1.-p(1)*p(1))*(1.-p(2)*p(2))+offset;
+                 break;
+           default:
+                 Assert(false, ExcNotImplemented());
+         }
+      }
+  }
+  
+  
+  
+  template<int dim>
+  double
+  PillowFunction<dim>::laplacian (const Point<dim>   &p,
                                  const unsigned int) const
-{
-  Assert (values.size() == points.size(),
-         ExcDimensionMismatch(values.size(), points.size()));
-
-  for (unsigned int i=0;i<points.size();++i)
-    {
-      const Point<dim>& p = points[i];
-      values[i] = p(0)*p(1);
-    }
-}
-
-
-template<int dim>
-double
-Q1WedgeFunction<dim>::laplacian (const Point<dim>   &,
+  {
+    switch(dim)
+      {
+       case 1:
+             return -2.;
+       case 2:
+             return -2.*((1.-p(0)*p(0))+(1.-p(1)*p(1)));
+       case 3:
+             return -2.*((1.-p(0)*p(0))*(1.-p(1)*p(1))
+                         +(1.-p(1)*p(1))*(1.-p(2)*p(2))
+                         +(1.-p(2)*p(2))*(1.-p(0)*p(0)));
+       default:
+             Assert(false, ExcNotImplemented());
+      }
+    return 0.;
+  }
+  
+  template<int dim>
+  void
+  PillowFunction<dim>::laplacian_list (const typename std::vector<Point<dim> > &points,
+                                      std::vector<double>            &values,
+                                      const unsigned int) const
+  {
+    Assert (values.size() == points.size(),
+           ExcDimensionMismatch(values.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      {
+       const Point<dim>& p = points[i];
+       switch(dim)
+         {
+           case 1:
+                 values[i] = -2.;
+                 break;
+           case 2:
+                 values[i] = -2.*((1.-p(0)*p(0))+(1.-p(1)*p(1)));
+                 break;
+           case 3:
+                 values[i] = -2.*((1.-p(0)*p(0))*(1.-p(1)*p(1))
+                                  +(1.-p(1)*p(1))*(1.-p(2)*p(2))
+                                  +(1.-p(2)*p(2))*(1.-p(0)*p(0)));
+                 break;
+           default:
+                 Assert(false, ExcNotImplemented());
+         }
+      }
+  }
+  
+  template<int dim>
+  Tensor<1,dim>
+  PillowFunction<dim>::gradient (const Point<dim>   &p,
                                 const unsigned int) const
-{
-  return 0.;
-}
-
-
-template<int dim>
-void
-Q1WedgeFunction<dim>::laplacian_list (const typename std::vector<Point<dim> > &points,
-                                     std::vector<double>            &values,
+  {
+    Tensor<1,dim> result;
+    switch(dim)
+      {
+       case 1:
+             result[0] = -2.*p(0);
+             break;
+       case 2:
+             result[0] = -2.*p(0)*(1.-p(1)*p(1));
+             result[1] = -2.*p(1)*(1.-p(0)*p(0));
+             break;
+       case 3:
+             result[0] = -2.*p(0)*(1.-p(1)*p(1))*(1.-p(2)*p(2));
+             result[1] = -2.*p(1)*(1.-p(0)*p(0))*(1.-p(2)*p(2));
+             result[2] = -2.*p(2)*(1.-p(0)*p(0))*(1.-p(1)*p(1));
+             break;
+       default:
+             Assert(false, ExcNotImplemented());
+      }
+    return result;
+  }
+  
+  template<int dim>
+  void
+  PillowFunction<dim>::gradient_list (const typename std::vector<Point<dim> > &points,
+                                     typename std::vector<Tensor<1,dim> >    &gradients,
                                      const unsigned int) const
-{
-  Assert (values.size() == points.size(),
-         ExcDimensionMismatch(values.size(), points.size()));
-
-  for (unsigned int i=0;i<points.size();++i)
-    values[i] = 0.;
-}
-
-
-
-template<int dim>
-Tensor<1,dim>
-Q1WedgeFunction<dim>::gradient (const Point<dim>   &p,
-                               const unsigned int) const
-{
-  Tensor<1,dim> erg;
-  erg[0] = p(1);
-  erg[1] = p(0);
-  return erg;
-}
-
-
-
-template<int dim>
-void
-Q1WedgeFunction<dim>::gradient_list (const typename std::vector<Point<dim> > &points,
-                                    typename std::vector<Tensor<1,dim> >    &gradients,
-                                    const unsigned int) const
-{
-  Assert (gradients.size() == points.size(),
-         ExcDimensionMismatch(gradients.size(), points.size()));
-
-  for (unsigned int i=0; i<points.size(); ++i)
-    {
-      gradients[i][0] = points[i](1);
-      gradients[i][1] = points[i](0);
-    }
-}
-
-
+  {
+    Assert (gradients.size() == points.size(),
+           ExcDimensionMismatch(gradients.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      {
+       const Point<dim>& p = points[i];
+       switch(dim)
+         {
+           case 1:
+                 gradients[i][0] = -2.*p(0);
+                 break;
+           case 2:
+                 gradients[i][0] = -2.*p(0)*(1.-p(1)*p(1));
+                 gradients[i][1] = -2.*p(1)*(1.-p(0)*p(0));
+                 break;
+           case 3:
+                 gradients[i][0] = -2.*p(0)*(1.-p(1)*p(1))*(1.-p(2)*p(2));
+                 gradients[i][1] = -2.*p(1)*(1.-p(0)*p(0))*(1.-p(2)*p(2));
+                 gradients[i][2] = -2.*p(2)*(1.-p(0)*p(0))*(1.-p(1)*p(1));
+                 break;
+           default:
+                 Assert(false, ExcNotImplemented());
+         }
+      }
+  }
+  
 //////////////////////////////////////////////////////////////////////
-
-
-template<int dim>
-PillowFunction<dim>::PillowFunction (const double offset)
-               :
-               offset(offset)
-{}
-
-
-template<int dim>
-double
-PillowFunction<dim>::value (const Point<dim>   &p,
-                           const unsigned int) const
-{
-  switch(dim)
-    {
-      case 1:
-           return 1.-p(0)*p(0)+offset;
-      case 2:
-           return (1.-p(0)*p(0))*(1.-p(1)*p(1))+offset;
-      case 3:
-           return (1.-p(0)*p(0))*(1.-p(1)*p(1))*(1.-p(2)*p(2))+offset;
-      default:
-           Assert(false, ExcNotImplemented());
-    }
-  return 0.;
-}
-
-template<int dim>
-void
-PillowFunction<dim>::value_list (const typename std::vector<Point<dim> > &points,
-                                std::vector<double>            &values,
+  
+  template<int dim>
+  double
+  CosineFunction<dim>::value (const Point<dim>   &p,
+                             const unsigned int) const
+  {
+    switch(dim)
+      {
+       case 1:
+             return std::cos(M_PI_2*p(0));
+       case 2:
+             return std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1));
+       case 3:
+             return std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
+       default:
+             Assert(false, ExcNotImplemented());
+      }
+    return 0.;
+  }
+  
+  template<int dim>
+  void
+  CosineFunction<dim>::value_list (const typename std::vector<Point<dim> > &points,
+                                  std::vector<double>            &values,
+                                  const unsigned int) const
+  {
+    Assert (values.size() == points.size(),
+           ExcDimensionMismatch(values.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      {
+       const Point<dim>& p = points[i];
+       switch(dim)
+         {
+           case 1:
+                 values[i] = std::cos(M_PI_2*p(0));
+                 break;
+           case 2:
+                 values[i] = std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1));
+                 break;
+           case 3:
+                 values[i] = std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
+                 break;
+           default:
+                 Assert(false, ExcNotImplemented());
+         }
+      }
+  }
+  
+  template<int dim>
+  double
+  CosineFunction<dim>::laplacian (const Point<dim>   &p,
+                                 const unsigned int) const
+  {
+    switch(dim)
+      {
+       case 1:
+             return -M_PI_2*M_PI_2* std::cos(M_PI_2*p(0));
+       case 2:
+             return -2*M_PI_2*M_PI_2* std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1));
+       case 3:
+             return -3*M_PI_2*M_PI_2* std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
+       default:
+             Assert(false, ExcNotImplemented());
+      }
+    return 0.;
+  }
+  
+  template<int dim>
+  void
+  CosineFunction<dim>::laplacian_list (const typename std::vector<Point<dim> > &points,
+                                      std::vector<double>            &values,
+                                      const unsigned int) const
+  {
+    Assert (values.size() == points.size(),
+           ExcDimensionMismatch(values.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      {
+       const Point<dim>& p = points[i];
+       switch(dim)
+         {
+           case 1:
+                 values[i] = -M_PI_2*M_PI_2* std::cos(M_PI_2*p(0));
+                 break;
+           case 2:
+                 values[i] = -2*M_PI_2*M_PI_2* std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1));
+                 break;
+           case 3:
+                 values[i] = -3*M_PI_2*M_PI_2* std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
+                 break;
+           default:
+                 Assert(false, ExcNotImplemented());
+         }
+      }
+  }
+  
+  template<int dim>
+  Tensor<1,dim>
+  CosineFunction<dim>::gradient (const Point<dim>   &p,
                                 const unsigned int) const
-{
-  Assert (values.size() == points.size(),
-         ExcDimensionMismatch(values.size(), points.size()));
-
-  for (unsigned int i=0;i<points.size();++i)
-    {
-      const Point<dim>& p = points[i];
-      switch(dim)
-       {
-         case 1:
-               values[i] = 1.-p(0)*p(0)+offset;
-               break;
-         case 2:
-               values[i] = (1.-p(0)*p(0))*(1.-p(1)*p(1))+offset;
-               break;
-         case 3:
-               values[i] = (1.-p(0)*p(0))*(1.-p(1)*p(1))*(1.-p(2)*p(2))+offset;
-               break;
-         default:
-               Assert(false, ExcNotImplemented());
-       }
-    }
-}
-
-
-
-template<int dim>
-double
-PillowFunction<dim>::laplacian (const Point<dim>   &p,
+  {
+    Tensor<1,dim> result;
+    switch(dim)
+      {
+       case 1:
+             result[0] = -M_PI_2* std::sin(M_PI_2*p(0));
+             break;
+       case 2:
+             result[0] = -M_PI_2* std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1));
+             result[1] = -M_PI_2* std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1));
+             break;
+       case 3:
+             result[0] = -M_PI_2* std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
+             result[1] = -M_PI_2* std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
+             result[2] = -M_PI_2* std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::sin(M_PI_2*p(2));
+             break;
+       default:
+             Assert(false, ExcNotImplemented());
+      }
+    return result;
+  }
+  
+  template<int dim>
+  void
+  CosineFunction<dim>::gradient_list (const typename std::vector<Point<dim> > &points,
+                                     typename std::vector<Tensor<1,dim> >    &gradients,
+                                     const unsigned int) const
+  {
+    Assert (gradients.size() == points.size(),
+           ExcDimensionMismatch(gradients.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      {
+       const Point<dim>& p = points[i];
+       switch(dim)
+         {
+           case 1:
+                 gradients[i][0] = -M_PI_2* std::sin(M_PI_2*p(0));
+                 break;
+           case 2:
+                 gradients[i][0] = -M_PI_2* std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1));
+                 gradients[i][1] = -M_PI_2* std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1));
+                 break;
+           case 3:
+                 gradients[i][0] = -M_PI_2* std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
+                 gradients[i][1] = -M_PI_2* std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
+                 gradients[i][2] = -M_PI_2* std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::sin(M_PI_2*p(2));
+                 break;
+           default:
+                 Assert(false, ExcNotImplemented());
+         }
+      }
+  }
+  
+  template<int dim>
+  Tensor<2,dim>
+  CosineFunction<dim>::hessian (const Point<dim>   &p,
                                const unsigned int) const
-{
-  switch(dim)
-    {
-      case 1:
-           return -2.;
-      case 2:
-           return -2.*((1.-p(0)*p(0))+(1.-p(1)*p(1)));
-      case 3:
-           return -2.*((1.-p(0)*p(0))*(1.-p(1)*p(1))
-                       +(1.-p(1)*p(1))*(1.-p(2)*p(2))
-                       +(1.-p(2)*p(2))*(1.-p(0)*p(0)));
-      default:
-           Assert(false, ExcNotImplemented());
-    }
-  return 0.;
-}
-
-template<int dim>
-void
-PillowFunction<dim>::laplacian_list (const typename std::vector<Point<dim> > &points,
-                                    std::vector<double>            &values,
+  {
+    const double pi2 = M_PI_2*M_PI_2;
+    
+    Tensor<2,dim> result;
+    switch(dim)
+      {
+       case 1:
+             result[0][0] = -pi2* std::cos(M_PI_2*p(0));
+             break;
+       case 2:
+             if (true)
+               {
+                 const double coco = -pi2*std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1));
+                 const double sisi = pi2*std::sin(M_PI_2*p(0)) * std::sin(M_PI_2*p(1));
+                 result[0][0] = coco;
+                 result[1][1] = coco;
+                 result[0][1] = sisi;
+                 result[1][0] = sisi;
+               }
+             break;
+       case 3:
+             if (true)
+               {
+                 const double cococo = -pi2*std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
+                 const double sisico = pi2*std::sin(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
+                 const double sicosi = pi2*std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::sin(M_PI_2*p(2));
+                 const double cosisi = pi2*std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::sin(M_PI_2*p(2));
+                 
+                 result[0][0] = cococo;
+                 result[1][1] = cococo;
+                 result[2][2] = cococo;
+                 result[0][1] = sisico;
+                 result[1][0] = sisico;
+                 result[0][2] = sicosi;
+                 result[2][0] = sicosi;
+                 result[1][2] = cosisi;
+                 result[2][1] = cosisi;
+               }
+             break;
+       default:
+             Assert(false, ExcNotImplemented());
+      }
+    return result;
+  }
+  
+  template<int dim>
+  void
+  CosineFunction<dim>::hessian_list (const typename std::vector<Point<dim> > &points,
+                                    typename std::vector<Tensor<2,dim> >    &hessians,
                                     const unsigned int) const
-{
-  Assert (values.size() == points.size(),
-         ExcDimensionMismatch(values.size(), points.size()));
-
-  for (unsigned int i=0;i<points.size();++i)
-    {
-      const Point<dim>& p = points[i];
-      switch(dim)
-       {
-         case 1:
-               values[i] = -2.;
-               break;
-         case 2:
-               values[i] = -2.*((1.-p(0)*p(0))+(1.-p(1)*p(1)));
-               break;
-         case 3:
-               values[i] = -2.*((1.-p(0)*p(0))*(1.-p(1)*p(1))
-                                +(1.-p(1)*p(1))*(1.-p(2)*p(2))
-                                +(1.-p(2)*p(2))*(1.-p(0)*p(0)));
-               break;
-         default:
-               Assert(false, ExcNotImplemented());
-       }
-    }
-}
-
-template<int dim>
-Tensor<1,dim>
-PillowFunction<dim>::gradient (const Point<dim>   &p,
-                              const unsigned int) const
-{
-  Tensor<1,dim> result;
-  switch(dim)
-    {
-      case 1:
-           result[0] = -2.*p(0);
-           break;
-      case 2:
-           result[0] = -2.*p(0)*(1.-p(1)*p(1));
-           result[1] = -2.*p(1)*(1.-p(0)*p(0));
-           break;
-      case 3:
-           result[0] = -2.*p(0)*(1.-p(1)*p(1))*(1.-p(2)*p(2));
-           result[1] = -2.*p(1)*(1.-p(0)*p(0))*(1.-p(2)*p(2));
-           result[2] = -2.*p(2)*(1.-p(0)*p(0))*(1.-p(1)*p(1));
-           break;
-      default:
-           Assert(false, ExcNotImplemented());
-    }
-  return result;
-}
-
-template<int dim>
-void
-PillowFunction<dim>::gradient_list (const typename std::vector<Point<dim> > &points,
-                                   typename std::vector<Tensor<1,dim> >    &gradients,
-                                   const unsigned int) const
-{
-  Assert (gradients.size() == points.size(),
-         ExcDimensionMismatch(gradients.size(), points.size()));
-
-  for (unsigned int i=0;i<points.size();++i)
-    {
-      const Point<dim>& p = points[i];
-      switch(dim)
-       {
-         case 1:
-               gradients[i][0] = -2.*p(0);
-               break;
-         case 2:
-               gradients[i][0] = -2.*p(0)*(1.-p(1)*p(1));
-               gradients[i][1] = -2.*p(1)*(1.-p(0)*p(0));
-               break;
-         case 3:
-               gradients[i][0] = -2.*p(0)*(1.-p(1)*p(1))*(1.-p(2)*p(2));
-               gradients[i][1] = -2.*p(1)*(1.-p(0)*p(0))*(1.-p(2)*p(2));
-               gradients[i][2] = -2.*p(2)*(1.-p(0)*p(0))*(1.-p(1)*p(1));
-               break;
-         default:
-               Assert(false, ExcNotImplemented());
-       }
-    }
-}
-
+  {
+    Assert (hessians.size() == points.size(),
+           ExcDimensionMismatch(hessians.size(), points.size()));
+    
+    const double pi2 = M_PI_2*M_PI_2;
+    
+    for (unsigned int i=0;i<points.size();++i)
+      {
+       const Point<dim>& p = points[i];
+       switch(dim)
+         {
+           case 1:
+                 hessians[i][0][0] = -pi2* std::cos(M_PI_2*p(0));
+                 break;
+           case 2:
+                 if (true)
+                   {
+                     const double coco = -pi2*std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1));
+                     const double sisi = pi2*std::sin(M_PI_2*p(0)) * std::sin(M_PI_2*p(1));
+                     hessians[i][0][0] = coco;
+                     hessians[i][1][1] = coco;
+                     hessians[i][0][1] = sisi;
+                     hessians[i][1][0] = sisi;
+                   }
+                 break;
+           case 3:
+                 if (true)
+                   {
+                     const double cococo = -pi2*std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
+                     const double sisico = pi2*std::sin(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
+                     const double sicosi = pi2*std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::sin(M_PI_2*p(2));
+                     const double cosisi = pi2*std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::sin(M_PI_2*p(2));
+                     
+                     hessians[i][0][0] = cococo;
+                     hessians[i][1][1] = cococo;
+                     hessians[i][2][2] = cococo;
+                     hessians[i][0][1] = sisico;
+                     hessians[i][1][0] = sisico;
+                     hessians[i][0][2] = sicosi;
+                     hessians[i][2][0] = sicosi;
+                     hessians[i][1][2] = cosisi;
+                     hessians[i][2][1] = cosisi;
+                   }
+                 break;
+           default:
+                 Assert(false, ExcNotImplemented());
+         }
+      }
+  }
+  
 //////////////////////////////////////////////////////////////////////
-
-template<int dim>
-double
-CosineFunction<dim>::value (const Point<dim>   &p,
-                           const unsigned int) const
-{
-  switch(dim)
-    {
-      case 1:
-           return std::cos(M_PI_2*p(0));
-      case 2:
-           return std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1));
-      case 3:
-           return std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
-      default:
-           Assert(false, ExcNotImplemented());
-    }
-  return 0.;
-}
-
-template<int dim>
-void
-CosineFunction<dim>::value_list (const typename std::vector<Point<dim> > &points,
-                                std::vector<double>            &values,
-                                const unsigned int) const
-{
-  Assert (values.size() == points.size(),
-         ExcDimensionMismatch(values.size(), points.size()));
-
-  for (unsigned int i=0;i<points.size();++i)
-    {
-      const Point<dim>& p = points[i];
-      switch(dim)
-       {
-         case 1:
-               values[i] = std::cos(M_PI_2*p(0));
-               break;
-         case 2:
-               values[i] = std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1));
-               break;
-         case 3:
-               values[i] = std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
-               break;
-         default:
-               Assert(false, ExcNotImplemented());
-       }
-    }
-}
-
-template<int dim>
-double
-CosineFunction<dim>::laplacian (const Point<dim>   &p,
+  
+  template<int dim>
+  double
+  ExpFunction<dim>::value (const Point<dim>   &p,
+                          const unsigned int) const
+  {
+    switch(dim)
+      {
+       case 1:
+             return std::exp(p(0));
+       case 2:
+             return std::exp(p(0)) * std::exp(p(1));
+       case 3:
+             return std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
+       default:
+             Assert(false, ExcNotImplemented());
+      }
+    return 0.;
+  }
+  
+  template<int dim>
+  void
+  ExpFunction<dim>::value_list (const typename std::vector<Point<dim> > &points,
+                               std::vector<double>            &values,
                                const unsigned int) const
-{
-  switch(dim)
-    {
-      case 1:
-           return -M_PI_2*M_PI_2* std::cos(M_PI_2*p(0));
-      case 2:
-           return -2*M_PI_2*M_PI_2* std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1));
-      case 3:
-           return -3*M_PI_2*M_PI_2* std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
-      default:
-           Assert(false, ExcNotImplemented());
-    }
-  return 0.;
-}
-
-template<int dim>
-void
-CosineFunction<dim>::laplacian_list (const typename std::vector<Point<dim> > &points,
-                                    std::vector<double>            &values,
-                                    const unsigned int) const
-{
-  Assert (values.size() == points.size(),
-         ExcDimensionMismatch(values.size(), points.size()));
-
-  for (unsigned int i=0;i<points.size();++i)
-    {
-      const Point<dim>& p = points[i];
-      switch(dim)
-       {
-         case 1:
-               values[i] = -M_PI_2*M_PI_2* std::cos(M_PI_2*p(0));
-               break;
-         case 2:
-               values[i] = -2*M_PI_2*M_PI_2* std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1));
-               break;
-         case 3:
-               values[i] = -3*M_PI_2*M_PI_2* std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
-               break;
-         default:
-               Assert(false, ExcNotImplemented());
-       }
-    }
-}
-
-template<int dim>
-Tensor<1,dim>
-CosineFunction<dim>::gradient (const Point<dim>   &p,
+  {
+    Assert (values.size() == points.size(),
+           ExcDimensionMismatch(values.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      {
+       const Point<dim>& p = points[i];
+       switch(dim)
+         {
+           case 1:
+                 values[i] = std::exp(p(0));
+                 break;
+           case 2:
+                 values[i] = std::exp(p(0)) * std::exp(p(1));
+                 break;
+           case 3:
+                 values[i] = std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
+                 break;
+           default:
+                 Assert(false, ExcNotImplemented());
+         }
+      }
+  }
+  
+  template<int dim>
+  double
+  ExpFunction<dim>::laplacian (const Point<dim>   &p,
                               const unsigned int) const
-{
-  Tensor<1,dim> result;
-  switch(dim)
-    {
-      case 1:
-           result[0] = -M_PI_2* std::sin(M_PI_2*p(0));
-           break;
-      case 2:
-           result[0] = -M_PI_2* std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1));
-           result[1] = -M_PI_2* std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1));
-           break;
-      case 3:
-           result[0] = -M_PI_2* std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
-           result[1] = -M_PI_2* std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
-           result[2] = -M_PI_2* std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::sin(M_PI_2*p(2));
-           break;
-      default:
-           Assert(false, ExcNotImplemented());
-    }
-  return result;
-}
-
-template<int dim>
-void
-CosineFunction<dim>::gradient_list (const typename std::vector<Point<dim> > &points,
-                                   typename std::vector<Tensor<1,dim> >    &gradients,
+  {
+    switch(dim)
+      {
+       case 1:
+             return std::exp(p(0));
+       case 2:
+             return 2 * std::exp(p(0)) * std::exp(p(1));
+       case 3:
+             return 3 * std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
+       default:
+             Assert(false, ExcNotImplemented());
+      }
+    return 0.;
+  }
+  
+  template<int dim>
+  void
+  ExpFunction<dim>::laplacian_list (const typename std::vector<Point<dim> > &points,
+                                   std::vector<double>            &values,
                                    const unsigned int) const
-{
-  Assert (gradients.size() == points.size(),
-         ExcDimensionMismatch(gradients.size(), points.size()));
-
-  for (unsigned int i=0;i<points.size();++i)
-    {
-      const Point<dim>& p = points[i];
-      switch(dim)
-       {
-         case 1:
-               gradients[i][0] = -M_PI_2* std::sin(M_PI_2*p(0));
-               break;
-         case 2:
-               gradients[i][0] = -M_PI_2* std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1));
-               gradients[i][1] = -M_PI_2* std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1));
-               break;
-         case 3:
-               gradients[i][0] = -M_PI_2* std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
-               gradients[i][1] = -M_PI_2* std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
-               gradients[i][2] = -M_PI_2* std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::sin(M_PI_2*p(2));
-               break;
-         default:
-               Assert(false, ExcNotImplemented());
-       }
-    }
-}
-
-template<int dim>
-Tensor<2,dim>
-CosineFunction<dim>::hessian (const Point<dim>   &p,
-                              const unsigned int) const
-{
-  const double pi2 = M_PI_2*M_PI_2;
-
-  Tensor<2,dim> result;
-  switch(dim)
-    {
-      case 1:
-           result[0][0] = -pi2* std::cos(M_PI_2*p(0));
-           break;
-      case 2:
-       if (true)
+  {
+    Assert (values.size() == points.size(),
+           ExcDimensionMismatch(values.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      {
+       const Point<dim>& p = points[i];
+       switch(dim)
          {
-           const double coco = -pi2*std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1));
-           const double sisi = pi2*std::sin(M_PI_2*p(0)) * std::sin(M_PI_2*p(1));
-           result[0][0] = coco;
-           result[1][1] = coco;
-           result[0][1] = sisi;
-           result[1][0] = sisi;
+           case 1:
+                 values[i] = std::exp(p(0));
+                 break;
+           case 2:
+                 values[i] = 2 * std::exp(p(0)) * std::exp(p(1));
+                 break;
+           case 3:
+                 values[i] = 3 * std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
+                 break;
+           default:
+                 Assert(false, ExcNotImplemented());
          }
-       break;
-      case 3:
-       if (true)
+      }
+  }
+  
+  template<int dim>
+  Tensor<1,dim>
+  ExpFunction<dim>::gradient (const Point<dim>   &p,
+                             const unsigned int) const
+  {
+    Tensor<1,dim> result;
+    switch(dim)
+      {
+       case 1:
+             result[0] = std::exp(p(0));
+             break;
+       case 2:
+             result[0] = std::exp(p(0)) * std::exp(p(1));
+             result[1] = std::exp(p(0)) * std::exp(p(1));
+             break;
+       case 3:
+             result[0] = std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
+             result[1] = std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
+             result[2] = std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
+             break;
+       default:
+             Assert(false, ExcNotImplemented());
+      }
+    return result;
+  }
+  
+  template<int dim>
+  void
+  ExpFunction<dim>::gradient_list (const typename std::vector<Point<dim> > &points,
+                                  typename std::vector<Tensor<1,dim> >    &gradients,
+                                  const unsigned int) const
+  {
+    Assert (gradients.size() == points.size(),
+           ExcDimensionMismatch(gradients.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      {
+       const Point<dim>& p = points[i];
+       switch(dim)
          {
-           const double cococo = -pi2*std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
-           const double sisico = pi2*std::sin(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
-           const double sicosi = pi2*std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::sin(M_PI_2*p(2));
-           const double cosisi = pi2*std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::sin(M_PI_2*p(2));
-
-           result[0][0] = cococo;
-           result[1][1] = cococo;
-           result[2][2] = cococo;
-           result[0][1] = sisico;
-           result[1][0] = sisico;
-           result[0][2] = sicosi;
-           result[2][0] = sicosi;
-           result[1][2] = cosisi;
-           result[2][1] = cosisi;
+           case 1:
+                 gradients[i][0] = std::exp(p(0));
+                 break;
+           case 2:
+                 gradients[i][0] = std::exp(p(0)) * std::exp(p(1));
+                 gradients[i][1] = std::exp(p(0)) * std::exp(p(1));
+                 break;
+           case 3:
+                 gradients[i][0] = std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
+                 gradients[i][1] = std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
+                 gradients[i][2] = std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
+                 break;
+           default:
+                 Assert(false, ExcNotImplemented());
          }
-       break;
-      default:
-           Assert(false, ExcNotImplemented());
-    }
-  return result;
-}
-
-template<int dim>
-void
-CosineFunction<dim>::hessian_list (const typename std::vector<Point<dim> > &points,
-                                   typename std::vector<Tensor<2,dim> >    &hessians,
-                                   const unsigned int) const
-{
-  Assert (hessians.size() == points.size(),
-         ExcDimensionMismatch(hessians.size(), points.size()));
-
-  const double pi2 = M_PI_2*M_PI_2;
-
-  for (unsigned int i=0;i<points.size();++i)
-    {
-      const Point<dim>& p = points[i];
-      switch(dim)
-       {
-         case 1:
-               hessians[i][0][0] = -pi2* std::cos(M_PI_2*p(0));
-               break;
-         case 2:
-           if (true)
-             {
-               const double coco = -pi2*std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1));
-               const double sisi = pi2*std::sin(M_PI_2*p(0)) * std::sin(M_PI_2*p(1));
-               hessians[i][0][0] = coco;
-               hessians[i][1][1] = coco;
-               hessians[i][0][1] = sisi;
-               hessians[i][1][0] = sisi;
-             }
-           break;
-         case 3:
-           if (true)
-             {
-               const double cococo = -pi2*std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
-               const double sisico = pi2*std::sin(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
-               const double sicosi = pi2*std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::sin(M_PI_2*p(2));
-               const double cosisi = pi2*std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::sin(M_PI_2*p(2));
-
-               hessians[i][0][0] = cococo;
-               hessians[i][1][1] = cococo;
-               hessians[i][2][2] = cococo;
-               hessians[i][0][1] = sisico;
-               hessians[i][1][0] = sisico;
-               hessians[i][0][2] = sicosi;
-               hessians[i][2][0] = sicosi;
-               hessians[i][1][2] = cosisi;
-               hessians[i][2][1] = cosisi;
-             }
-           break;
-         default:
-           Assert(false, ExcNotImplemented());
-       }
-    }
-}
-
+      }
+  }
+  
 //////////////////////////////////////////////////////////////////////
-
-template<int dim>
-double
-ExpFunction<dim>::value (const Point<dim>   &p,
-                        const unsigned int) const
-{
-  switch(dim)
-    {
-      case 1:
-           return std::exp(p(0));
-      case 2:
-           return std::exp(p(0)) * std::exp(p(1));
-      case 3:
-           return std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
-      default:
-           Assert(false, ExcNotImplemented());
-    }
-  return 0.;
-}
-
-template<int dim>
-void
-ExpFunction<dim>::value_list (const typename std::vector<Point<dim> > &points,
-                             std::vector<double>            &values,
-                             const unsigned int) const
-{
-  Assert (values.size() == points.size(),
-         ExcDimensionMismatch(values.size(), points.size()));
-
-  for (unsigned int i=0;i<points.size();++i)
-    {
-      const Point<dim>& p = points[i];
-      switch(dim)
-       {
-         case 1:
-               values[i] = std::exp(p(0));
-               break;
-         case 2:
-               values[i] = std::exp(p(0)) * std::exp(p(1));
-               break;
-         case 3:
-               values[i] = std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
-               break;
-         default:
-               Assert(false, ExcNotImplemented());
-       }
-    }
-}
-
-template<int dim>
-double
-ExpFunction<dim>::laplacian (const Point<dim>   &p,
-                            const unsigned int) const
-{
-  switch(dim)
-    {
-      case 1:
-           return std::exp(p(0));
-      case 2:
-           return 2 * std::exp(p(0)) * std::exp(p(1));
-      case 3:
-           return 3 * std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
-      default:
-           Assert(false, ExcNotImplemented());
-    }
-  return 0.;
-}
-
-template<int dim>
-void
-ExpFunction<dim>::laplacian_list (const typename std::vector<Point<dim> > &points,
-                                 std::vector<double>            &values,
+  
+  
+  double
+  LSingularityFunction::value (const Point<2>   &p,
+                              const unsigned int) const
+  {
+    double x = p(0);
+    double y = p(1);
+    
+    if ((x>=0) && (y>=0))
+      return 0.;
+    
+    double phi = std::atan2(y,-x)+M_PI;
+    double r2 = x*x+y*y;
+    
+    return std::pow(r2,1./3.) * std::sin(2./3.*phi);
+  }
+  
+  
+  void
+  LSingularityFunction::value_list (const std::vector<Point<2> > &points,
+                                   std::vector<double>            &values,
+                                   const unsigned int) const
+  {
+    Assert (values.size() == points.size(),
+           ExcDimensionMismatch(values.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      {
+       double x = points[i](0);
+       double y = points[i](1);
+       
+       if ((x>=0) && (y>=0))
+         values[i] = 0.;
+       else
+         {
+           double phi = std::atan2(y,-x)+M_PI;
+           double r2 = x*x+y*y;
+           
+           values[i] = std::pow(r2,1./3.) * std::sin(2./3.*phi);
+         }
+      }
+  }
+  
+  
+  double
+  LSingularityFunction::laplacian (const Point<2>   &,
+                                  const unsigned int) const
+  {
+    return 0.;
+  }
+  
+  
+  void
+  LSingularityFunction::laplacian_list (const std::vector<Point<2> > &points,
+                                       std::vector<double>            &values,
+                                       const unsigned int) const
+  {
+    Assert (values.size() == points.size(),
+           ExcDimensionMismatch(values.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      values[i] = 0.;
+  }
+  
+  
+  Tensor<1,2>
+  LSingularityFunction::gradient (const Point<2>   &p,
                                  const unsigned int) const
-{
-  Assert (values.size() == points.size(),
-         ExcDimensionMismatch(values.size(), points.size()));
-
-  for (unsigned int i=0;i<points.size();++i)
-    {
-      const Point<dim>& p = points[i];
-      switch(dim)
-       {
-         case 1:
-               values[i] = std::exp(p(0));
-               break;
-         case 2:
-               values[i] = 2 * std::exp(p(0)) * std::exp(p(1));
-               break;
-         case 3:
-               values[i] = 3 * std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
-               break;
-         default:
-               Assert(false, ExcNotImplemented());
-       }
-    }
-}
-
-template<int dim>
-Tensor<1,dim>
-ExpFunction<dim>::gradient (const Point<dim>   &p,
-                           const unsigned int) const
-{
-  Tensor<1,dim> result;
-  switch(dim)
-    {
-      case 1:
-           result[0] = std::exp(p(0));
-           break;
-      case 2:
-           result[0] = std::exp(p(0)) * std::exp(p(1));
-           result[1] = std::exp(p(0)) * std::exp(p(1));
-           break;
-      case 3:
-           result[0] = std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
-           result[1] = std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
-           result[2] = std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
-           break;
-      default:
-           Assert(false, ExcNotImplemented());
-    }
-  return result;
-}
-
-template<int dim>
-void
-ExpFunction<dim>::gradient_list (const typename std::vector<Point<dim> > &points,
-                                typename std::vector<Tensor<1,dim> >    &gradients,
-                                const unsigned int) const
-{
-  Assert (gradients.size() == points.size(),
-         ExcDimensionMismatch(gradients.size(), points.size()));
-
-  for (unsigned int i=0;i<points.size();++i)
-    {
-      const Point<dim>& p = points[i];
-      switch(dim)
-       {
-         case 1:
-               gradients[i][0] = std::exp(p(0));
-               break;
-         case 2:
-               gradients[i][0] = std::exp(p(0)) * std::exp(p(1));
-               gradients[i][1] = std::exp(p(0)) * std::exp(p(1));
-               break;
-         case 3:
-               gradients[i][0] = std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
-               gradients[i][1] = std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
-               gradients[i][2] = std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
-               break;
-         default:
-               Assert(false, ExcNotImplemented());
-       }
-    }
-}
-
+  {
+    double x = p(0);
+    double y = p(1);
+    double phi = std::atan2(y,-x)+M_PI;
+    double r43 = std::pow(x*x+y*y,2./3.);
+    
+    Tensor<1,2> result;
+    result[0] = 2./3.*(std::sin(2./3.*phi)*x + std::cos(2./3.*phi)*y)/r43;
+    result[1] = 2./3.*(std::sin(2./3.*phi)*y - std::cos(2./3.*phi)*x)/r43;
+    return result;
+  }
+  
+  
+  void
+  LSingularityFunction::gradient_list (const std::vector<Point<2> > &points,
+                                      std::vector<Tensor<1,2> >    &gradients,
+                                      const unsigned int) const
+  {
+    Assert (gradients.size() == points.size(),
+           ExcDimensionMismatch(gradients.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      {
+       const Point<2>& p = points[i];
+       double x = p(0);
+       double y = p(1);
+       double phi = std::atan2(y,-x)+M_PI;
+       double r43 = std::pow(x*x+y*y,2./3.);
+       
+       gradients[i][0] = 2./3.*(std::sin(2./3.*phi)*x + std::cos(2./3.*phi)*y)/r43;
+       gradients[i][1] = 2./3.*(std::sin(2./3.*phi)*y - std::cos(2./3.*phi)*x)/r43;
+      }
+  }
+  
 //////////////////////////////////////////////////////////////////////
-
-
-double
-LSingularityFunction::value (const Point<2>   &p,
-                            const unsigned int) const
-{
-  double x = p(0);
-  double y = p(1);
-
-  if ((x>=0) && (y>=0))
-    return 0.;
   
-  double phi = std::atan2(y,-x)+M_PI;
-  double r2 = x*x+y*y;
-
-  return std::pow(r2,1./3.) * std::sin(2./3.*phi);
-}
-
-
-void
-LSingularityFunction::value_list (const std::vector<Point<2> > &points,
-                                 std::vector<double>            &values,
+  
+  double
+  SlitSingularityFunction::value (const Point<2>   &p,
                                  const unsigned int) const
-{
-  Assert (values.size() == points.size(),
-         ExcDimensionMismatch(values.size(), points.size()));
-
-  for (unsigned int i=0;i<points.size();++i)
-    {
-      double x = points[i](0);
-      double y = points[i](1);
-
-      if ((x>=0) && (y>=0))
-       values[i] = 0.;
-      else
-       {
-         double phi = std::atan2(y,-x)+M_PI;
-         double r2 = x*x+y*y;
-
-         values[i] = std::pow(r2,1./3.) * std::sin(2./3.*phi);
-       }
-    }
-}
-
-
-double
-LSingularityFunction::laplacian (const Point<2>   &,
-                                const unsigned int) const
-{
-  return 0.;
-}
-
-
-void
-LSingularityFunction::laplacian_list (const std::vector<Point<2> > &points,
-                                     std::vector<double>            &values,
+  {
+    double x = p(0);
+    double y = p(1);
+    
+    double phi = std::atan2(x,y)+M_PI;
+    double r2 = x*x+y*y;
+    
+    return std::pow(r2,.25) * std::sin(.5*phi);
+  }
+  
+  
+  void
+  SlitSingularityFunction::value_list (const std::vector<Point<2> > &points,
+                                      std::vector<double>            &values,
+                                      const unsigned int) const
+  {
+    Assert (values.size() == points.size(),
+           ExcDimensionMismatch(values.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      {
+       double x = points[i](0);
+       double y = points[i](1);
+       
+       double phi = std::atan2(x,y)+M_PI;
+       double r2 = x*x+y*y;
+       
+       values[i] = std::pow(r2,.25) * std::sin(.5*phi);
+      }
+  }
+  
+  
+  double
+  SlitSingularityFunction::laplacian (const Point<2>   &,
                                      const unsigned int) const
-{
-  Assert (values.size() == points.size(),
-         ExcDimensionMismatch(values.size(), points.size()));
-
-  for (unsigned int i=0;i<points.size();++i)
-    values[i] = 0.;
-}
-
-
-Tensor<1,2>
-LSingularityFunction::gradient (const Point<2>   &p,
-                               const unsigned int) const
-{
-  double x = p(0);
-  double y = p(1);
-  double phi = std::atan2(y,-x)+M_PI;
-  double r43 = std::pow(x*x+y*y,2./3.);
-  
-  Tensor<1,2> result;
-  result[0] = 2./3.*(std::sin(2./3.*phi)*x + std::cos(2./3.*phi)*y)/r43;
-  result[1] = 2./3.*(std::sin(2./3.*phi)*y - std::cos(2./3.*phi)*x)/r43;
-  return result;
-}
-
-
-void
-LSingularityFunction::gradient_list (const std::vector<Point<2> > &points,
-                                    std::vector<Tensor<1,2> >    &gradients,
+  {
+    return 0.;
+  }
+  
+  
+  void
+  SlitSingularityFunction::laplacian_list (const std::vector<Point<2> > &points,
+                                          std::vector<double>            &values,
+                                          const unsigned int) const
+  {
+    Assert (values.size() == points.size(),
+           ExcDimensionMismatch(values.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      values[i] = 0.;
+  }
+  
+  
+  Tensor<1,2>
+  SlitSingularityFunction::gradient (const Point<2>   &p,
                                     const unsigned int) const
-{
-  Assert (gradients.size() == points.size(),
-         ExcDimensionMismatch(gradients.size(), points.size()));
-
-  for (unsigned int i=0;i<points.size();++i)
-    {
-      const Point<2>& p = points[i];
-      double x = p(0);
-      double y = p(1);
-      double phi = std::atan2(y,-x)+M_PI;
-      double r43 = std::pow(x*x+y*y,2./3.);
-
-      gradients[i][0] = 2./3.*(std::sin(2./3.*phi)*x + std::cos(2./3.*phi)*y)/r43;
-      gradients[i][1] = 2./3.*(std::sin(2./3.*phi)*y - std::cos(2./3.*phi)*x)/r43;
-    }
-}
-
+  {
+    double x = p(0);
+    double y = p(1);
+    double phi = std::atan2(x,y)+M_PI;
+    double r64 = std::pow(x*x+y*y,3./4.);
+    
+    
+    Tensor<1,2> result;
+    result[0] = 1./2.*(std::sin(1./2.*phi)*x + std::cos(1./2.*phi)*y)/r64;
+    result[1] = 1./2.*(std::sin(1./2.*phi)*y - std::cos(1./2.*phi)*x)/r64;
+    return result;
+  }
+  
+  
+  void
+  SlitSingularityFunction::gradient_list (const std::vector<Point<2> > &points,
+                                         std::vector<Tensor<1,2> >    &gradients,
+                                         const unsigned int) const
+  {
+    Assert (gradients.size() == points.size(),
+           ExcDimensionMismatch(gradients.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      {
+       const Point<2>& p = points[i];
+       double x = p(0);
+       double y = p(1);
+       double phi = std::atan2(x,y)+M_PI;
+       double r64 = std::pow(x*x+y*y,3./4.);
+       
+       gradients[i][0] = 1./2.*(std::sin(1./2.*phi)*x + std::cos(1./2.*phi)*y)/r64;
+       gradients[i][1] = 1./2.*(std::sin(1./2.*phi)*y - std::cos(1./2.*phi)*x)/r64;
+      }
+  }
+  
 //////////////////////////////////////////////////////////////////////
-
-
-double
-SlitSingularityFunction::value (const Point<2>   &p,
+  
+  template<int dim>
+  JumpFunction<dim>::JumpFunction(const Point<dim> &direction,
+                                 const double      steepness)
+                 :
+                 direction(direction),
+                 steepness(steepness)
+  {
+    switch (dim)
+      {
+       case 1:
+             angle = 0;
+             break;
+       case 2:
+             angle = std::atan2(direction(0),direction(1));
+             break;
+       case 3:
+             Assert(false, ExcNotImplemented());
+      }
+    sine = std::sin(angle);
+    cosine = std::cos(angle);
+  }
+  
+  
+  
+  template<int dim>
+  double
+  JumpFunction<dim>::value (const Point<dim>   &p,
+                           const unsigned int) const
+  {
+    double x = steepness*(-cosine*p(0)+sine*p(1));
+    return -std::atan(x);
+  }
+  
+  
+  
+  template<int dim>
+  void
+  JumpFunction<dim>::value_list (const typename std::vector<Point<dim> > &p,
+                                std::vector<double>          &values,
+                                const unsigned int) const
+  {
+    Assert (values.size() == p.size(),
+           ExcDimensionMismatch(values.size(), p.size()));
+    
+    for (unsigned int i=0;i<p.size();++i)
+      {
+       double x = steepness*(-cosine*p[i](0)+sine*p[i](1));
+       values[i] = -std::atan(x);
+      }
+  }
+  
+  
+  template<int dim>
+  double
+  JumpFunction<dim>::laplacian (const Point<dim>   &p,
                                const unsigned int) const
-{
-  double x = p(0);
-  double y = p(1);
-
-  double phi = std::atan2(x,y)+M_PI;
-  double r2 = x*x+y*y;
-
-  return std::pow(r2,.25) * std::sin(.5*phi);
-}
-
-
-void
-SlitSingularityFunction::value_list (const std::vector<Point<2> > &points,
-                                    std::vector<double>            &values,
+  {
+    double x = steepness*(-cosine*p(0)+sine*p(1));
+    double r = 1+x*x;
+    return 2*steepness*steepness*x/(r*r);
+  }
+  
+  
+  template<int dim>
+  void
+  JumpFunction<dim>::laplacian_list (const typename std::vector<Point<dim> > &p,
+                                    std::vector<double>          &values,
                                     const unsigned int) const
-{
-  Assert (values.size() == points.size(),
-         ExcDimensionMismatch(values.size(), points.size()));
-
-  for (unsigned int i=0;i<points.size();++i)
-    {
-      double x = points[i](0);
-      double y = points[i](1);
-
-      double phi = std::atan2(x,y)+M_PI;
-      double r2 = x*x+y*y;
-
-      values[i] = std::pow(r2,.25) * std::sin(.5*phi);
-    }
-}
-
-
-double
-SlitSingularityFunction::laplacian (const Point<2>   &,
-                                   const unsigned int) const
-{
-  return 0.;
-}
-
-
-void
-SlitSingularityFunction::laplacian_list (const std::vector<Point<2> > &points,
-                                        std::vector<double>            &values,
-                                        const unsigned int) const
-{
-  Assert (values.size() == points.size(),
-         ExcDimensionMismatch(values.size(), points.size()));
-
-  for (unsigned int i=0;i<points.size();++i)
-    values[i] = 0.;
-}
-
-
-Tensor<1,2>
-SlitSingularityFunction::gradient (const Point<2>   &p,
-                                  const unsigned int) const
-{
-  double x = p(0);
-  double y = p(1);
-  double phi = std::atan2(x,y)+M_PI;
-  double r64 = std::pow(x*x+y*y,3./4.);
+  {
+    Assert (values.size() == p.size(),
+           ExcDimensionMismatch(values.size(), p.size()));
+    
+    double f = 2*steepness*steepness;
+    
+    for (unsigned int i=0;i<p.size();++i)
+      {
+       double x = steepness*(-cosine*p[i](0)+sine*p[i](1));
+       double r = 1+x*x;
+       values[i] = f*x/(r*r);
+      }
+  }
   
   
-  Tensor<1,2> result;
-  result[0] = 1./2.*(std::sin(1./2.*phi)*x + std::cos(1./2.*phi)*y)/r64;
-  result[1] = 1./2.*(std::sin(1./2.*phi)*y - std::cos(1./2.*phi)*x)/r64;
-  return result;
-}
-
-
-void
-SlitSingularityFunction::gradient_list (const std::vector<Point<2> > &points,
-                                       std::vector<Tensor<1,2> >    &gradients,
-                                       const unsigned int) const
-{
-  Assert (gradients.size() == points.size(),
-         ExcDimensionMismatch(gradients.size(), points.size()));
-
-  for (unsigned int i=0;i<points.size();++i)
-    {
-      const Point<2>& p = points[i];
-      double x = p(0);
-      double y = p(1);
-      double phi = std::atan2(x,y)+M_PI;
-      double r64 = std::pow(x*x+y*y,3./4.);
-
-      gradients[i][0] = 1./2.*(std::sin(1./2.*phi)*x + std::cos(1./2.*phi)*y)/r64;
-      gradients[i][1] = 1./2.*(std::sin(1./2.*phi)*y - std::cos(1./2.*phi)*x)/r64;
-    }
-}
-
-//////////////////////////////////////////////////////////////////////
-
-template<int dim>
-JumpFunction<dim>::JumpFunction(const Point<dim> &direction,
-                               const double      steepness)
-               :
-               direction(direction),
-               steepness(steepness)
-{
-  switch (dim)
-    {
-      case 1:
-           angle = 0;
-           break;
-      case 2:
-           angle = std::atan2(direction(0),direction(1));
-           break;
-      case 3:
-           Assert(false, ExcNotImplemented());
-    }
-  sine = std::sin(angle);
-  cosine = std::cos(angle);
-}
-
-           
-
-template<int dim>
-double
-JumpFunction<dim>::value (const Point<dim>   &p,
-                         const unsigned int) const
-{
-  double x = steepness*(-cosine*p(0)+sine*p(1));
-  return -std::atan(x);
-}
-
-
-
-template<int dim>
-void
-JumpFunction<dim>::value_list (const typename std::vector<Point<dim> > &p,
-                              std::vector<double>          &values,
+  
+  template<int dim>
+  Tensor<1,dim>
+  JumpFunction<dim>::gradient (const Point<dim>   &p,
                               const unsigned int) const
-{
-  Assert (values.size() == p.size(),
-         ExcDimensionMismatch(values.size(), p.size()));
-
-  for (unsigned int i=0;i<p.size();++i)
-    {
-      double x = steepness*(-cosine*p[i](0)+sine*p[i](1));
-      values[i] = -std::atan(x);
-    }
-}
-
-
-template<int dim>
-double
-JumpFunction<dim>::laplacian (const Point<dim>   &p,
-                             const unsigned int) const
-{
-  double x = steepness*(-cosine*p(0)+sine*p(1));
-  double r = 1+x*x;
-  return 2*steepness*steepness*x/(r*r);
-}
-
-
-template<int dim>
-void
-JumpFunction<dim>::laplacian_list (const typename std::vector<Point<dim> > &p,
-                                  std::vector<double>          &values,
-                                  const unsigned int) const
-{
-  Assert (values.size() == p.size(),
-         ExcDimensionMismatch(values.size(), p.size()));
-
-  double f = 2*steepness*steepness;
-  
-  for (unsigned int i=0;i<p.size();++i)
-    {
-      double x = steepness*(-cosine*p[i](0)+sine*p[i](1));
-      double r = 1+x*x;
-      values[i] = f*x/(r*r);
-    }
-}
-
-
-
-template<int dim>
-Tensor<1,dim>
-JumpFunction<dim>::gradient (const Point<dim>   &p,
-                            const unsigned int) const
-{
-  double x = steepness*(-cosine*p(0)+sine*p(1));
-  double r = -steepness*(1+x*x);
-  Tensor<1,dim> erg;
-  erg[0] = cosine*r;
-  erg[1] = sine*r;
-  return erg;
-}
-
-
-
-template<int dim>
-void
-JumpFunction<dim>::gradient_list (const typename std::vector<Point<dim> > &p,
-                                 typename std::vector<Tensor<1,dim> >  &gradients,
-                                 const unsigned int) const
-{
-  Assert (gradients.size() == p.size(),
-         ExcDimensionMismatch(gradients.size(), p.size()));
-
-  for (unsigned int i=0; i<p.size(); ++i)
-    {
-      double x = steepness*(cosine*p[i](0)+sine*p[i](1));
-      double r = -steepness*(1+x*x);
-      gradients[i][0] = cosine*r;
-      gradients[i][1] = sine*r;
-    }
-}
-
-
-
-template <int dim>
-unsigned int
-JumpFunction<dim>::memory_consumption () const
-{
-                                  // only simple data elements, so
-                                  // use sizeof operator
-  return sizeof (*this);
-};
-
-
-
-
-
+  {
+    double x = steepness*(-cosine*p(0)+sine*p(1));
+    double r = -steepness*(1+x*x);
+    Tensor<1,dim> erg;
+    erg[0] = cosine*r;
+    erg[1] = sine*r;
+    return erg;
+  }
+  
+  
+  
+  template<int dim>
+  void
+  JumpFunction<dim>::gradient_list (const typename std::vector<Point<dim> > &p,
+                                   typename std::vector<Tensor<1,dim> >  &gradients,
+                                   const unsigned int) const
+  {
+    Assert (gradients.size() == p.size(),
+           ExcDimensionMismatch(gradients.size(), p.size()));
+    
+    for (unsigned int i=0; i<p.size(); ++i)
+      {
+       double x = steepness*(cosine*p[i](0)+sine*p[i](1));
+       double r = -steepness*(1+x*x);
+       gradients[i][0] = cosine*r;
+       gradients[i][1] = sine*r;
+      }
+  }
+  
+  
+  
+  template <int dim>
+  unsigned int
+  JumpFunction<dim>::memory_consumption () const
+  {
+                                    // only simple data elements, so
+                                    // use sizeof operator
+    return sizeof (*this);
+  };
+  
+  
+  
+  
+  
 /* ---------------------- FourierSineFunction ----------------------- */
-
-
-template <int dim>
-FourierCosineFunction<dim>::
-FourierCosineFunction (const Point<dim> &fourier_coefficients)
-               :
-               Function<dim> (1),
-                fourier_coefficients (fourier_coefficients)
-{};
-
-
-
-template <int dim>
-double
-FourierCosineFunction<dim>::value (const Point<dim>   &p,
+  
+  
+  template <int dim>
+  FourierCosineFunction<dim>::
+  FourierCosineFunction (const Point<dim> &fourier_coefficients)
+                 :
+                 Function<dim> (1),
+    fourier_coefficients (fourier_coefficients)
+  {};
+  
+  
+  
+  template <int dim>
+  double
+  FourierCosineFunction<dim>::value (const Point<dim>   &p,
+                                    const unsigned int  component) const
+  {
+    Assert (component==0, ExcIndexRange(component,0,1));
+    double val=1;
+    for (unsigned int i=0; i<dim; ++i)
+      val *= std::cos(fourier_coefficients[i] * p[i]);
+    return val;
+  };
+  
+  
+  
+  template <int dim>
+  Tensor<1,dim>
+  FourierCosineFunction<dim>::gradient (const Point<dim>   &p,
+                                       const unsigned int  component) const
+  {
+    Assert (component==0, ExcIndexRange(component,0,1));
+    Tensor<1,dim> grad;
+    for (unsigned int i=0; i<dim; ++i)
+      grad[i] = 1;
+    
+    for (unsigned int i=0; i<dim; ++i)
+      {
+       const double cos_i = std::cos(fourier_coefficients[i] * p[i]);
+       const double sin_i = std::sin(fourier_coefficients[i] * p[i]);
+       
+       for (unsigned int d=0; d<dim; ++d)
+         if (d==i)
+           grad[d] *= - fourier_coefficients[i] * sin_i;
+         else
+           grad[d] *= cos_i;
+      };
+    
+    return grad;
+  };
+  
+  
+  
+  template <int dim>
+  double
+  FourierCosineFunction<dim>::laplacian (const Point<dim>   &p,
+                                        const unsigned int  component) const
+  {
+    Assert (component==0, ExcIndexRange(component,0,1));
+    double val = -(fourier_coefficients*fourier_coefficients);
+    for (unsigned int i=0; i<dim; ++i)
+      val *= std::cos(fourier_coefficients[i] * p[i]);
+    return val;
+  };
+  
+  
+  
+  
+/* ---------------------- FourierSineFunction ----------------------- */
+  
+  
+  
+  template <int dim>
+  FourierSineFunction<dim>::
+  FourierSineFunction (const Point<dim> &fourier_coefficients)
+                 :
+                 Function<dim> (1),
+    fourier_coefficients (fourier_coefficients)
+  {};
+  
+  
+  
+  template <int dim>
+  double
+  FourierSineFunction<dim>::value (const Point<dim>   &p,
                                   const unsigned int  component) const
-{
-  Assert (component==0, ExcIndexRange(component,0,1));
-  double val=1;
-  for (unsigned int i=0; i<dim; ++i)
-    val *= std::cos(fourier_coefficients[i] * p[i]);
-  return val;
-};
-
-
-
-template <int dim>
-Tensor<1,dim>
-FourierCosineFunction<dim>::gradient (const Point<dim>   &p,
+  {
+    Assert (component==0, ExcIndexRange(component,0,1));
+    double val=1;
+    for (unsigned int i=0; i<dim; ++i)
+      val *= std::sin(fourier_coefficients[i] * p[i]);
+    return val;
+  };
+  
+  
+  
+  template <int dim>
+  Tensor<1,dim>
+  FourierSineFunction<dim>::gradient (const Point<dim>   &p,
                                      const unsigned int  component) const
-{
-  Assert (component==0, ExcIndexRange(component,0,1));
-  Tensor<1,dim> grad;
-  for (unsigned int i=0; i<dim; ++i)
-    grad[i] = 1;
-
-  for (unsigned int i=0; i<dim; ++i)
-    {
-      const double cos_i = std::cos(fourier_coefficients[i] * p[i]);
-      const double sin_i = std::sin(fourier_coefficients[i] * p[i]);
-      
-      for (unsigned int d=0; d<dim; ++d)
-       if (d==i)
-         grad[d] *= - fourier_coefficients[i] * sin_i;
-       else
-         grad[d] *= cos_i;
-    };
+  {
+    Assert (component==0, ExcIndexRange(component,0,1));
+    Tensor<1,dim> grad;
+    for (unsigned int i=0; i<dim; ++i)
+      grad[i] = 1;
+    
+    for (unsigned int i=0; i<dim; ++i)
+      {
+       const double cos_i = std::cos(fourier_coefficients[i] * p[i]);
+       const double sin_i = std::sin(fourier_coefficients[i] * p[i]);
+       
+       for (unsigned int d=0; d<dim; ++d)
+         if (d==i)
+           grad[d] *= fourier_coefficients[i] * cos_i;
+         else
+           grad[d] *= sin_i;
+      };
+    
+    return grad;
+  };
   
-  return grad;
-};
-
-
-
-template <int dim>
-double
-FourierCosineFunction<dim>::laplacian (const Point<dim>   &p,
+  
+  
+  template <int dim>
+  double
+  FourierSineFunction<dim>::laplacian (const Point<dim>   &p,
                                       const unsigned int  component) const
-{
-  Assert (component==0, ExcIndexRange(component,0,1));
-  double val = -(fourier_coefficients*fourier_coefficients);
-  for (unsigned int i=0; i<dim; ++i)
-    val *= std::cos(fourier_coefficients[i] * p[i]);
-  return val;
-};
-
-
-
-
-/* ---------------------- FourierSineFunction ----------------------- */
-
-
-
-template <int dim>
-FourierSineFunction<dim>::
-FourierSineFunction (const Point<dim> &fourier_coefficients)
-               :
-               Function<dim> (1),
-                fourier_coefficients (fourier_coefficients)
-{};
-
-
-
-template <int dim>
-double
-FourierSineFunction<dim>::value (const Point<dim>   &p,
-                                const unsigned int  component) const
-{
-  Assert (component==0, ExcIndexRange(component,0,1));
-  double val=1;
-  for (unsigned int i=0; i<dim; ++i)
-    val *= std::sin(fourier_coefficients[i] * p[i]);
-  return val;
-};
-
-
-
-template <int dim>
-Tensor<1,dim>
-FourierSineFunction<dim>::gradient (const Point<dim>   &p,
-                                   const unsigned int  component) const
-{
-  Assert (component==0, ExcIndexRange(component,0,1));
-  Tensor<1,dim> grad;
-  for (unsigned int i=0; i<dim; ++i)
-    grad[i] = 1;
-
-  for (unsigned int i=0; i<dim; ++i)
-    {
-      const double cos_i = std::cos(fourier_coefficients[i] * p[i]);
-      const double sin_i = std::sin(fourier_coefficients[i] * p[i]);
-      
-      for (unsigned int d=0; d<dim; ++d)
-       if (d==i)
-         grad[d] *= fourier_coefficients[i] * cos_i;
-       else
-         grad[d] *= sin_i;
-    };
+  {
+    Assert (component==0, ExcIndexRange(component,0,1));
+    double val = -(fourier_coefficients*fourier_coefficients);
+    for (unsigned int i=0; i<dim; ++i)
+      val *= std::sin(fourier_coefficients[i] * p[i]);
+    return val;
+  };
+  
+  
+  
+  
+  template class SquareFunction<1>;
+  template class SquareFunction<2>;
+  template class SquareFunction<3>;
+  template class Q1WedgeFunction<1>;
+  template class Q1WedgeFunction<2>;
+  template class Q1WedgeFunction<3>;
+  template class PillowFunction<1>;
+  template class PillowFunction<2>;
+  template class PillowFunction<3>;
+  template class CosineFunction<1>;
+  template class CosineFunction<2>;
+  template class CosineFunction<3>;
+  template class ExpFunction<1>;
+  template class ExpFunction<2>;
+  template class ExpFunction<3>;
+  template class JumpFunction<1>;
+  template class JumpFunction<2>;
+  template class JumpFunction<3>;
+  template class FourierCosineFunction<1>;
+  template class FourierCosineFunction<2>;
+  template class FourierCosineFunction<3>;
+  template class FourierSineFunction<1>;
+  template class FourierSineFunction<2>;
+  template class FourierSineFunction<3>;
+  
   
-  return grad;
-};
-
-
-
-template <int dim>
-double
-FourierSineFunction<dim>::laplacian (const Point<dim>   &p,
-                                    const unsigned int  component) const
-{
-  Assert (component==0, ExcIndexRange(component,0,1));
-  double val = -(fourier_coefficients*fourier_coefficients);
-  for (unsigned int i=0; i<dim; ++i)
-    val *= std::sin(fourier_coefficients[i] * p[i]);
-  return val;
 };
-
-
-
-
-template class SquareFunction<1>;
-template class SquareFunction<2>;
-template class SquareFunction<3>;
-template class Q1WedgeFunction<1>;
-template class Q1WedgeFunction<2>;
-template class Q1WedgeFunction<3>;
-template class PillowFunction<1>;
-template class PillowFunction<2>;
-template class PillowFunction<3>;
-template class CosineFunction<1>;
-template class CosineFunction<2>;
-template class CosineFunction<3>;
-template class ExpFunction<1>;
-template class ExpFunction<2>;
-template class ExpFunction<3>;
-template class JumpFunction<1>;
-template class JumpFunction<2>;
-template class JumpFunction<3>;
-template class FourierCosineFunction<1>;
-template class FourierCosineFunction<2>;
-template class FourierCosineFunction<3>;
-template class FourierSineFunction<1>;
-template class FourierSineFunction<2>;
-template class FourierSineFunction<3>;
-
index d1595b8c4472656320131142cbaf3cb60548381a..5355aa30201ed8c114ff0594623fd6f51fcdee15 100644 (file)
@@ -158,12 +158,22 @@ documentation, etc</a>.
 <h3>base</h3>
 
 <ol>
+  <li> <p>
+       Changed: The examples classes in the base directory are now
+       moved into a namespace <code class="class">Functions</code> of
+       their own. This improves encapsulation, but also keeps the
+       documentation of these functions together, as they were
+       previously scrambled all over the screen in the documentation
+       page of the base library.
+       <br>
+       (WB 2001/07/18)
+
   <li> <p>
        New: classes <code class="class">FourierSineFunction</code> and
        <code class="class">FourierCosineFunction</code>, resembling
        one mode of a Fourier decomposition.
        <br>
-       (GK 2001/07/18)
+       (WB 2001/07/18)
 
   <li> <p>
        New: class <code class="class">vector2d</code> was introduced

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.