We are now in position to define the tangential gradient of a function $v : S \rightarrow \mathbb
R$ by
@f[
-(\nabla_S v)\circ \mathbf x_S := D \mathbf x_S \ G_S^{-1} \ D (v \circ \mathbf x_S).
+(\nabla_S v)\circ \mathbf x_S := D \mathbf x_S \ G_S^{-1} \ \nabla (v \circ \mathbf x_S).
@f]
The surface Laplacian (also called the Laplace-Beltrami operator) is then
defined as $\Delta_S:= \nabla_S \cdot \nabla_S$.
@f]
and take advantage of the partition ${\mathbb T}$ to further write
@f[
-\sum_{K\in {\mathbb T}}\int_K \nabla_K u \cdot \nabla_K v = \sum_{K\in
+\sum_{K\in {\mathbb T}}\int_K \nabla_{K} u \cdot \nabla_{K} v = \sum_{K\in
{\mathbb T}} \int_K f \ v \qquad \forall v \in H^1_0(\Gamma).
@f]
Moreover, each integral in the above expression is computed in the reference
@f{align*}
&\int_{K} \nabla_{K} u \cdot \nabla_{K} v \\
&=
-\int_{\hat K} D(u \circ \mathbf x_K)^T G_K^{-1} (D \mathbf
- x_K)^T D \mathbf x_K G_K^{-1} D(v \circ \mathbf x_K) \sqrt{\det
+\int_{\hat K} \nabla (u \circ \mathbf x_K)^T G_K^{-1} (D \mathbf
+ x_K)^T D \mathbf x_K G_K^{-1} \nabla(v \circ \mathbf x_K) \sqrt{\det
(G_K)}
\\
&=
-\int_{\hat K} D(u \circ \mathbf x_K)^T G_K^{-1} D(v \circ \mathbf x_K) \sqrt{\det
+\int_{\hat K} \nabla (u \circ \mathbf x_K)^T G_K^{-1} \nabla (v \circ \mathbf x_K) \sqrt{\det
(G_K)}
@f}
and
evaluate the above integrals and
obtain
@f[\int_{K} \nabla_{K} u \cdot \nabla_{K} v \approx \sum_{l=1}^N
- (D(u \circ \mathbf x_K)(p_l))^T G^{-1}(p_l) D(v \circ \mathbf x_K)
+ (\nabla (u \circ \mathbf x_K)(p_l))^T G^{-1}(p_l) \nabla (v \circ \mathbf x_K)
(p_l) \sqrt{\det (G(p_l))} \ w_l
@f]
and