* \mathbf{\hat v}(\mathbf{\hat x}),
* \qquad
* \mathbf v(\mathbf x) = \mathbf A(\mathbf{\hat x})
- * \mathbf{\hat T}(\mathbf{\hat x}) \mathbf B(\mathbf{\hat x}),
+ * \mathbf{\hat T}(\mathbf{\hat x}) \mathbf B(\mathbf{\hat x}),
* @f]
* respectively, where the tensors <b>A</b> and <b>B</b> are
* determined by the MappingType enumerator.
*
* A general publication on differential geometry and finite elements
* is the survey <ul><li>Douglas N. Arnold, Richard S. Falk, and
- * Ragnar Winther. \textit{Finite element exterior calculus: from
- * Hodge theory to numerical stability.}
+ * Ragnar Winther. <i>Finite element exterior calculus: from
+ * Hodge theory to numerical stability.</i>
* Bull. Amer. Math. Soc. (N.S.), 47:281-354, 2010. <a
* href="http://dx.doi.org/10.1090/S0273-0979-10-01278-4">DOI:
* 10.1090/S0273-0979-10-01278-4</a>.</ul>
* \frac{1}{\text{det}J(\mathbf x)}
* J(\mathbf{\hat x}) \mathbf{\hat T}(\mathbf{\hat x})
* J^{-1}(\mathbf{\hat x}).
- * @f]
+ * @f]
* </ul>
*/
virtual