]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Minor formatting changes. Remove unnecessary code to set a vector to zero.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Thu, 31 May 2012 12:21:48 +0000 (12:21 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Thu, 31 May 2012 12:21:48 +0000 (12:21 +0000)
git-svn-id: https://svn.dealii.org/trunk@25584 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-15/step-15.cc

index fd0f7738dc5d9c8e8003eb29a1cf90bc7b689c38..6ab31f48b49844a93fa0086881cdb5d64bda7fc2 100644 (file)
@@ -215,10 +215,7 @@ namespace Step15
       {
        dof_handler.distribute_dofs (fe);
        present_solution.reinit (dof_handler.n_dofs());
-       for(unsigned int i=0; i<dof_handler.n_dofs();++i)
-         {
-           present_solution(i)=0;
-         }
+
                                         // The constraint matrix,
                                         // holding a list of the
                                         // hanging nodes, will be
@@ -291,55 +288,58 @@ namespace Step15
        fe_values.reinit (cell);
 
 
-       for (unsigned int q_point = 0; q_point < n_q_points; ++q_point) {
-
-                                          // To setup up the linear
-                                          // system, the gradient of
-                                          // the old solution in the
-                                          // quadrature points is
-                                          // needed. For this purpose
-                                          // there is is a function,
-                                          // which will write these
-                                          // gradients in a vector,
-                                          // where every component of
-                                          // the vector is a vector
-                                          // itself:
-
-         std::vector<Tensor<1, dim> > gradients(n_q_points);
-         fe_values.get_function_gradients(present_solution, gradients);
-
-                                          // Having the gradients of
-                                          // the old solution in the
-                                          // quadrature points, we
-                                          // are able to compute the
-                                          // coefficients $a_{n}$ in
-                                          // these points.
-
-         const double coeff = 1/sqrt(1 + gradients[q_point] * gradients[q_point]);
-
-                                          // The assembly of the
-                                          // system then is the same
-                                          // as always, except of the
-                                          // damping parameter of the
-                                          // Newton method, which we
-                                          // set on 0.1 in this case.
-
-         for (unsigned int i = 0; i < dofs_per_cell; ++i) {
-           for (unsigned int j = 0; j < dofs_per_cell; ++j) {
-             cell_matrix(i, j) += (fe_values.shape_grad(i, q_point)
-                                   * coeff
-                                   * (fe_values.shape_grad(j, q_point)
-                                      - coeff * coeff
-                                      * (fe_values.shape_grad(j, q_point)
-                                         * gradients[q_point])
-                                      * gradients[q_point])
-                                   * fe_values.JxW(q_point));
-           }
-
-           cell_rhs(i) -= (fe_values.shape_grad(i, q_point) * coeff
-                           * gradients[q_point] * fe_values.JxW(q_point));
+       for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
+         {
+
+                                            // To setup up the linear
+                                            // system, the gradient of
+                                            // the old solution in the
+                                            // quadrature points is
+                                            // needed. For this purpose
+                                            // there is is a function,
+                                            // which will write these
+                                            // gradients in a vector,
+                                            // where every component of
+                                            // the vector is a vector
+                                            // itself:
+
+           std::vector<Tensor<1, dim> > gradients(n_q_points);
+           fe_values.get_function_gradients(present_solution, gradients);
+
+                                            // Having the gradients of
+                                            // the old solution in the
+                                            // quadrature points, we
+                                            // are able to compute the
+                                            // coefficients $a_{n}$ in
+                                            // these points.
+
+           const double coeff = 1/sqrt(1 + gradients[q_point] * gradients[q_point]);
+
+                                            // The assembly of the
+                                            // system then is the same
+                                            // as always, except of the
+                                            // damping parameter of the
+                                            // Newton method, which we
+                                            // set on 0.1 in this case.
+
+           for (unsigned int i = 0; i < dofs_per_cell; ++i)
+             {
+               for (unsigned int j = 0; j < dofs_per_cell; ++j)
+                 {
+                   cell_matrix(i, j) += (fe_values.shape_grad(i, q_point)
+                                         * coeff
+                                         * (fe_values.shape_grad(j, q_point)
+                                            - coeff * coeff
+                                            * (fe_values.shape_grad(j, q_point)
+                                               * gradients[q_point])
+                                            * gradients[q_point])
+                                         * fe_values.JxW(q_point));
+                 }
+
+               cell_rhs(i) -= (fe_values.shape_grad(i, q_point) * coeff
+                               * gradients[q_point] * fe_values.JxW(q_point));
+             }
          }
-       }
 
        cell->get_dof_indices (local_dof_indices);
        for (unsigned int i=0; i<dofs_per_cell; ++i)
@@ -401,44 +401,44 @@ namespace Step15
        fe_values.reinit (cell);
 
 
-       for (unsigned int q_point = 0; q_point < n_q_points; ++q_point) {
-
-                                          // To setup up the linear
-                                          // system, the gradient of
-                                          // the old solution in the
-                                          // quadrature points is
-                                          // needed. For this purpose
-                                          // there is is a function,
-                                          // which will write these
-                                          // gradients in a vector,
-                                          // where every component of
-                                          // the vector is a vector
-                                          // itself:
-
-         std::vector<Tensor<1, dim> > gradients(n_q_points);
-         fe_values.get_function_gradients(linearization_point, gradients);
-
-                                          // Having the gradients of
-                                          // the old solution in the
-                                          // quadrature points, we
-                                          // are able to compute the
-                                          // coefficients $a_{n}$ in
-                                          // these points.
-
-         const double coeff = 1/sqrt(1 + gradients[q_point] * gradients[q_point]);
-
-                                          // The assembly of the
-                                          // system then is the same
-                                          // as always, except of the
-                                          // damping parameter of the
-                                          // Newton method, which we
-                                          // set on 0.1 in this case.
-
-         for (unsigned int i = 0; i < dofs_per_cell; ++i) {
-           cell_rhs(i) -= (fe_values.shape_grad(i, q_point) * coeff
-                           * gradients[q_point] * fe_values.JxW(q_point));
+       for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
+         {
+
+                                            // To setup up the linear
+                                            // system, the gradient of
+                                            // the old solution in the
+                                            // quadrature points is
+                                            // needed. For this purpose
+                                            // there is is a function,
+                                            // which will write these
+                                            // gradients in a vector,
+                                            // where every component of
+                                            // the vector is a vector
+                                            // itself:
+
+           std::vector<Tensor<1, dim> > gradients(n_q_points);
+           fe_values.get_function_gradients(linearization_point, gradients);
+
+                                            // Having the gradients of
+                                            // the old solution in the
+                                            // quadrature points, we
+                                            // are able to compute the
+                                            // coefficients $a_{n}$ in
+                                            // these points.
+
+           const double coeff = 1/sqrt(1 + gradients[q_point] * gradients[q_point]);
+
+                                            // The assembly of the
+                                            // system then is the same
+                                            // as always, except of the
+                                            // damping parameter of the
+                                            // Newton method, which we
+                                            // set on 0.1 in this case.
+
+           for (unsigned int i = 0; i < dofs_per_cell; ++i)
+             cell_rhs(i) -= (fe_values.shape_grad(i, q_point) * coeff
+                             * gradients[q_point] * fe_values.JxW(q_point));
          }
-       }
 
        cell->get_dof_indices (local_dof_indices);
        for (unsigned int i=0; i<dofs_per_cell; ++i)
@@ -684,7 +684,7 @@ namespace Step15
                                     // $10^{-3}$.
 
     double previous_res = 0;
-    while(first_step || (previous_res>1e-3))
+    while (first_step || (previous_res>1e-3))
       {
 
                                         // In the first step, we
@@ -698,7 +698,7 @@ namespace Step15
                                         // the first thing done every
                                         // time we restart the
                                         // process in the while-loop.
-       if(!first_step)
+       if (!first_step)
          {
            refine_grid();
 

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.