]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Think about using global std::vector objects in the value_list
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Thu, 16 Aug 2001 11:03:24 +0000 (11:03 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Thu, 16 Aug 2001 11:03:24 +0000 (11:03 +0000)
function, in order to avoid repeated memory allocation for these
objects. However, no way springs to mind as apparent, basically
because the length of these vectors depends on the number of points at
which the derivative is to be computed, which may vary between
successive calls to the function and we don't want to grow the vectors
beyond all bounds if once many points are required and usually only a
few.

Nevertheless, clean up some things...

git-svn-id: https://svn.dealii.org/trunk@4884 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/base/source/function_derivative.cc

index a78ab3a6f36b1a236d47470bd2c4b83ffac1f1e6..5b7f940164f2245962bfe4a5d51e2f077ddbe473 100644 (file)
@@ -56,6 +56,8 @@ FunctionDerivative<dim>::set_formula (DifferenceFormula form)
   formula = form;
 }
 
+
+
 template <int dim>
 double
 FunctionDerivative<dim>::value (const Point<dim>   &p,
@@ -86,10 +88,7 @@ FunctionDerivative<dim>::value (const Point<dim>   &p,
 using namespace std;
 #endif
 
-//TODO:[WB] Optimize construction of vectors thread-safe
-// Right now, vectors are allocated each time value_list is called.
-// This costs a lot of time and should be replaced by a static object,
-// but that would not be thread-safe anymore.
+
 
 template <int dim>
 void
@@ -98,7 +97,7 @@ FunctionDerivative<dim>::value_list (const typename std::vector<Point<dim> > &po
                                     const unsigned int              component) const
 {
   const unsigned int n = points.size();
-  bool variable_direction = (incr.size() == 1) ? false : true;
+  const bool variable_direction = (incr.size() == 1) ? false : true;
   if (variable_direction)
     Assert (incr.size() == points.size(),
            ExcDimensionMismatch(incr.size(), points.size()));
@@ -107,65 +106,88 @@ FunctionDerivative<dim>::value_list (const typename std::vector<Point<dim> > &po
     {
       case Euler:
       {
-       std::vector<Point<dim> > p1(n);
-       std::vector<Point<dim> > p2(n);
-       std::vector<double> e2(n);
-       for (unsigned int i=0;i<n;++i)
+                                        // let p1 and p2 be arrays of
+                                        // evaluation points shifted
+                                        // a little in direction j
+       std::vector<Point<dim> > p1 = points;
+       std::vector<Point<dim> > p2 = points;
+
+       for (unsigned int i=0; i<n; ++i)
          {
            const unsigned int j = (variable_direction) ? i:0;
-           p1[i] = points[i]+incr[j];
-           p2[i] = points[i]-incr[j];
-         }
-       f.value_list(p1, values, component);
-       f.value_list(p2, e2, component);
-      
-       for (unsigned int i=0;i<n;++i)
-         {
-           values[i] = (values[i]-e2[i])/(2*h);
-         }
+           p1[i] += incr[j];
+           p2[i] -= incr[j];
+         }     
+
+                                        // next get values of
+                                        // functions at these points
+       std::vector<double> values2(n);
+       f.value_list(p1, values,  component);
+       f.value_list(p2, values2, component);
+
+                                        // finally compute finite
+                                        // differences
+       for (unsigned int i=0; i<n; ++i)
+         values[i] = (values[i]-values2[i])/(2*h);
+         
        break;
-      }    
+      }
+       
       case UpwindEuler:
       {
-       std::vector<Point<dim> > p2(n);
-       std::vector<double> e2(n);
-       for (unsigned int i=0;i<n;++i)
+                                        // compute upwind points
+       std::vector<Point<dim> > p2 = points;
+       for (unsigned int i=0; i<n; ++i)
          {
            const unsigned int j = (variable_direction) ? i:0;
-           p2[i] = points[i]-incr[j];
+           p2[i] -= incr[j];
          }
-       f.value_list(points, values, component);
-       f.value_list(p2, e2, component);
-       for (unsigned int i=0;i<n;++i)
-         values[i] = (values[i]-e2[i])/h;
+
+                                        // get values at points
+       std::vector<double> values2(n);
+       f.value_list(points, values,  component);
+       f.value_list(p2,     values2, component);
+
+                                        // compute finite differences
+       for (unsigned int i=0; i<n; ++i)
+         values[i] = (values[i]-values2[i])/h;
        break;
       }
+       
       case FourthOrder:
       {
-       std::vector<Point<dim> > p_p(n);
+                                        // first compute evaluation
+                                        // points
+       std::vector<Point<dim> > p_p = points;
        std::vector<Point<dim> > p_pp(n);
-       std::vector<Point<dim> > p_m(n);
+       std::vector<Point<dim> > p_m = points;
        std::vector<Point<dim> > p_mm(n);
-       std::vector<double> e_p(n);
-       std::vector<double> e_pp(n);
-       std::vector<double> e_m(n);
        for (unsigned int i=0;i<n;++i)
          {
            const unsigned int j = (variable_direction) ? i:0;
-           p_p[i] = points[i]+incr[j];
+           p_p[i] += incr[j];
            p_pp[i] = p_p[i]+incr[j];
-           p_m[i] = points[i]-incr[j];
+           p_m[i] -= incr[j];
            p_mm[i] = p_m[i]-incr[j];
          }
+
+                                        // next compute values of
+                                        // function at these
+                                        // points. use @p{values} for
+                                        // @p{e_mm}
+       std::vector<double> e_p(n);
+       std::vector<double> e_pp(n);
+       std::vector<double> e_m(n);
+
        f.value_list(p_mm, values, component);
-       f.value_list(p_pp, e_pp, component);
-       f.value_list(p_p, e_p, component);
-       f.value_list(p_m, e_m, component);
-      
-       for (unsigned int i=0;i<n;++i)
-         {
-           values[i] = (values[i]-e_pp[i]+8*(e_p[i]-e_m[i]))/(12*h);
-         }
+       f.value_list(p_pp, e_pp,   component);
+       f.value_list(p_p,  e_p,    component);
+       f.value_list(p_m,  e_m,    component);
+
+                                        // compute finite differences
+       for (unsigned int i=0; i<n; ++i)
+         values[i] = (values[i]-e_pp[i]+8*(e_p[i]-e_m[i]))/(12*h);
+         
        break;
       }    
 
@@ -186,6 +208,8 @@ FunctionDerivative<dim>::memory_consumption () const
 };
 
 
+
+// explicit instantiations
 template class FunctionDerivative<1>;
 template class FunctionDerivative<2>;
 template class FunctionDerivative<3>;

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.