]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Generate intro from doxygen.
authorwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Mon, 27 Mar 2006 23:11:28 +0000 (23:11 +0000)
committerwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Mon, 27 Mar 2006 23:11:28 +0000 (23:11 +0000)
git-svn-id: https://svn.dealii.org/trunk@12687 0785d39b-7218-0410-832d-ea1e28bc413d

55 files changed:
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro.dox [moved from deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro.tex with 79% similarity]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro.html [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img1.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img10.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img11.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img12.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img13.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img14.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img15.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img16.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img17.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img18.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img19.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img2.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img20.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img21.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img22.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img23.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img24.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img25.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img26.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img27.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img28.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img29.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img3.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img30.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img31.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img32.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img33.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img34.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img35.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img36.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img37.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img38.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img39.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img4.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img40.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img41.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img42.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img43.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img44.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img45.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img46.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img47.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img48.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img49.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img5.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img50.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img51.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img52.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img53.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img6.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img7.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img8.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img9.png [deleted file]

similarity index 79%
rename from deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro.tex
rename to deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro.dox
index 783de9cf03ca95ea5d4b62ba916d66e36c4aeb3d..315a5b1d99288db8367eea18e6af46884e544350 100644 (file)
@@ -1,17 +1,6 @@
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-%% intro.html was generated from this file 
-%% with latex2html and some handwork
-%% (copying out the relevant parts from the 
-%% generated html file, replacing IMG=
-%% by the proper path)
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\documentclass{article}
-\usepackage{amsmath}
-\usepackage{amsfonts}
+<a name="Intro"></a>
+<h1>Introduction</h1>
 
-\renewcommand{\vec}[1]{{\mathbf #1}}
-\renewcommand{\div}{\nabla \cdot}
-\begin{document}
 
 In real life, most partial differential equations are really systems
 of equations. Accordingly, the solutions are usually
@@ -26,42 +15,42 @@ describes the displacement in each space direction of a rigid body
 which is subject to a force. Of course, the force is also
 vector-valued, meaning that in each point it has a direction and an
 absolute value. The elastic equations are the following:
-$$
+@f[
   -
   \partial_j (c_{ijkl} \partial_k u_l)
   =
   f_i,
   \qquad
   i=1\ldots d,
-$$
+@f]
 where the values $c_{ijkl}$ are the stiffness coefficients and
 will usually depend on the space coordinates. In
 many cases, one knows that the material under consideration is
 isotropic, in which case by introduction of the two coefficients
 $\lambda$ and $\mu$ the coefficient tensor reduces to
-$$
+@f[
   c_{ijkl} 
   =
   \lambda \delta_{ij} \delta_{kl} + 
   \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}).
-$$
+@f]
 
 The elastic equations can then be rewritten in much simpler a form:
-$$
+@f[
    -
-   \nabla \lambda (\div \vec u)
+   \nabla \lambda (\nabla\cdot {\mathbf u})
    -
-   (\nabla \cdot \mu \nabla) \vec u
+   (\nabla \cdot \mu \nabla) {\mathbf u}
    -
-   \div \mu (\nabla \vec u)^T
+   \nabla\cdot \mu (\nabla {\mathbf u})^T
    =
-   \vec f,
-$$
+   {\mathbf f},
+@f]
 and the respective bilinear form is then
-$$
-  a(\vec u, \vec v) =
+@f[
+  a({\mathbf u}, {\mathbf v}) =
   \left(
-    \lambda \div \vec u, \div \vec v
+    \lambda \nabla\cdot {\mathbf u}, \nabla\cdot {\mathbf v}
   \right)_\Omega
   +
   \sum_{i,j}
@@ -73,10 +62,10 @@ $$
   \left(
     \mu \partial_i u_j, \partial_j v_i
   \right)_\Omega,
-$$
+@f]
 or also writing the first term a sum over components:
-$$
-  a(\vec u, \vec v) =
+@f[
+  a({\mathbf u}, {\mathbf v}) =
   \sum_{i,j}
   \left(
     \lambda \partial_l u_l, \partial_k v_k
@@ -91,7 +80,7 @@ $$
   \left(
     \mu \partial_i u_j, \partial_j v_i
   \right)_\Omega.
-$$
+@f]
 
 
 How do we now assemble the matrix for such an equation? The first thing we
@@ -100,14 +89,14 @@ vector-valued finite elements. Basically, this comes down to the following:
 let $n$ be the number of shape functions for the scalar finite element of
 which we build the vector element (for example, we will use bilinear functions
 for each component of the vector-valued finite element, so the scalar finite
-element is the \texttt{FEQ1} element which we have used in previous examples
+element is the <code>FE_Q(1)</code> element which we have used in previous examples
 already, and $n=4$ in two space dimensions). Further, let $N$ be the number of
 shape functions for the vector element; in two space dimensions, we need $n$
 shape functions for each component of the vector, so $N=2n$. Then, the $i$th
 shape function of the vector element has the form
-$$
-  \Phi_i(\vec x) = \varphi_{base(i)}(\vec x)\ \vec e_{comp(i)},
-$$
+@f[
+  \Phi_i({\mathbf x}) = \varphi_{base(i)}({\mathbf x})\ {\mathbf e}_{comp(i)},
+@f]
 where $e_l$ is the $l$th unit vector, $comp(i)$ is the function that tells
 us which component of $\Phi_i$ is the one that is nonzero (for
 each vector shape function, only one component is nonzero, and all others are
@@ -120,70 +109,67 @@ respectively.
 For example (though this sequence of shape functions is not
 guaranteed, and you should not rely on it),
 the following layout could be used by the library:
-\begin{center}
-\begin{multline*}
-  \Phi_0(\vec x) = 
-  \begin{pmatrix}
-    \varphi_0(\vec x) \\ 0
-  \end{pmatrix},
-  \qquad
-  \Phi_1(\vec x) = 
-  \begin{pmatrix}
-    0 \\ \varphi_0(\vec x)
-  \end{pmatrix},
+@f{eqnarray*}
+  \Phi_0({\mathbf x}) &=& 
+  \left(\begin{array}{c}
+    \varphi_0({\mathbf x}) \\ 0
+  \end{array}\right),
   \\
-  \Phi_2(\vec x) = 
-  \begin{pmatrix}
-    \varphi_1(\vec x) \\ 0
-  \end{pmatrix},
-  \qquad
-  \Phi_3(\vec x) = 
-  \begin{pmatrix}
-    0 \\ \varphi_1(\vec x)
-  \end{pmatrix},
+  \Phi_1({\mathbf x}) &=& 
+  \left(\begin{array}{c}
+    0 \\ \varphi_0({\mathbf x})
+  \end{array}\right),
+  \\
+  \Phi_2({\mathbf x}) &=& 
+  \left(\begin{array}{c}
+    \varphi_1({\mathbf x}) \\ 0
+  \end{array}\right),
+  \\
+  \Phi_3({\mathbf x}) &=& 
+  \left(\begin{array}{c}
+    0 \\ \varphi_1({\mathbf x})
+  \end{array}\right),
   \ldots
-\end{multline*}
-\end{center}
+@f}
 where here
-$$
+@f[
   comp(0)=0, \quad  comp(1)=1, \quad  comp(2)=0, \quad  comp(3)=1, \quad  \ldots
-$$
-$$
+@f]
+@f[
   base(0)=0, \quad  base(1)=0, \quad  base(2)=1, \quad  base(3)=1, \quad  \ldots
-$$
+@f]
 
 In all but very rare cases, you will not need to know which shape function
 $\varphi_{base(i)}$ of the scalar element belongs to a shape function $\Phi_i$
 of the vector element. Let us therefore define
-$$
+@f[
   \phi_i = \varphi_{base(i)}
-$$
+@f]
 by which we can write the vector shape function as
-$$
-  \Phi_i(\vec x) = \phi_{i}(\vec x)\ \vec e_{comp(i)}.
-$$
+@f[
+  \Phi_i({\mathbf x}) = \phi_{i}({\mathbf x})\ {\mathbf e}_{comp(i)}.
+@f]
 You can now safely forget about the function $base(i)$, at least for the rest
 of this example program.
 
 Now using this vector shape functions, we can write the discrete finite
 element solution as
-$$
-  \vec u_h(\vec x) = 
-  \sum_i \Phi_i(\vec x)\ u_i
-$$
-with scalar coefficients $u_i$. If we define an analog function $\vec v_h$ as
+@f[
+  {\mathbf u}_h({\mathbf x}) = 
+  \sum_i \Phi_i({\mathbf x})\ u_i
+@f]
+with scalar coefficients $u_i$. If we define an analog function ${\mathbf v}_h$ as
 test function, we can write the discrete problem as follows: Find coefficients
 $u_i$ such that
-$$
-  a(\vec u_h, \vec v_h) = (\vec f, \vec v_h)
+@f[
+  a({\mathbf u}_h, {\mathbf v}_h) = ({\mathbf f}, {\mathbf v}_h)
   \qquad
-  \forall \vec v_h.
-$$
+  \forall {\mathbf v}_h.
+@f]
 
 If we insert the definition of the bilinear form and the representation of
-$\vec u_h$ and $\vec v_h$ into this formula:
-\begin{center}
-\begin{multline*}
+${\mathbf u}_h$ and ${\mathbf v}_h$ into this formula:
+@f{eqnarray*}
   \sum_{i,j}
     u_i v_j
   \sum_{k,l}
@@ -208,14 +194,13 @@ $\vec u_h$ and $\vec v_h$ into this formula:
     f_l,
     (\Phi_j)_l
   \right)_\Omega.
-\end{multline*}
-\end{center}
+@f}
 We note that here and in the following, the indices $k,l$ run over spatial
 directions, i.e. $0\le k,l < d$, and that indices $i,j$ run over degrees
 of freedoms.
 
 The local stiffness matrix on cell $K$ therefore has the following entries:
-$$
+@f[
   A^K_{ij}
   =
   \sum_{k,l}
@@ -232,19 +217,18 @@ $$
     \mu \partial_l (\Phi_i)_k, \partial_k (\Phi_j)_l
   \right)_K
   \right\},
-$$
+@f]
 where $i,j$ now are local degrees of freedom and therefore $0\le i,j < N$. 
 In these formulas, we always take some component of the vector shape functions
 $\Phi_i$, which are of course given as follows (see their definition):
-$$
+@f[
   (\Phi_i)_l = \phi_i \delta_{l,comp(i)},
-$$
+@f]
 with the Kronecker symbol $\delta_{nm}$. Due to this, we can delete some of
 the sums over $k$ and $l$:
-\begin{center}
-\begin{align*}
+@f{eqnarray*}
   A^K_{ij}
-  &=
+  &=&
   \sum_{k,l}
   \Bigl\{
   \left(
@@ -252,7 +236,7 @@ the sums over $k$ and $l$:
             \partial_k \phi_j\ \delta_{k,comp(j)}
   \right)_K
 \\
-  &\qquad\qquad +
+  &\qquad\qquad& +
   \left(
     \mu \partial_l \phi_i\ \delta_{k,comp(i)},
         \partial_l \phi_j\ \delta_{k,comp(j)}
@@ -264,7 +248,7 @@ the sums over $k$ and $l$:
   \right)_K
   \Bigr\}
 \\
-  &=
+  &=&
   \left(
     \lambda \partial_{comp(i)} \phi_i,
             \partial_{comp(j)} \phi_j
@@ -282,7 +266,7 @@ the sums over $k$ and $l$:
         \partial_{comp(i)} \phi_j
   \right)_K
 \\
-  &=
+  &=&
   \left(
     \lambda \partial_{comp(i)} \phi_i,
             \partial_{comp(j)} \phi_j
@@ -298,42 +282,41 @@ the sums over $k$ and $l$:
     \mu \partial_{comp(j)} \phi_i,
         \partial_{comp(i)} \phi_j
   \right)_K.
-\end{align*}
-\end{center}
+@f}
 
 Likewise, the contribution of cell $K$ to the right hand side vector is
-\begin{center}
-\begin{align*}
+@f{eqnarray*}
   f^K_j
-  &=
+  &=&
   \sum_l
   \left(
     f_l,
     (\Phi_j)_l
   \right)_K
 \\
-  &=
+  &=&
   \sum_l
   \left(
     f_l,
     \phi_j \delta_{l,comp(j)}
   \right)_K
 \\
-  &=
+  &=&
   \left(
     f_{comp(j)},
     \phi_j
   \right)_K.
-\end{align*}  
-\end{center}
+@f}
 
 This is the form in which we will implement the local stiffness matrix and
 right hand side vectors.
 
-As a final note: in the step-17 example program, we will revisit the elastic
+As a final note: in the @ref step_17 "step-17" example program, we will revisit the elastic
 problem laid out here, and will show how to solve it in parallel on a cluster
 of computers. The resulting program will thus be able to solve this problem to
-significantly higher accuracy, and more efficiently if this is required.
-
+significantly higher accuracy, and more efficiently if this is
+required. In addition, in @ref step_20 "step-20", we will revisit some
+vector-valued problems and show a few techniques that may make it
+simpler to actually go through all the stuff shown above, with
+<code>FiniteElement::system_to_component_index</code> etc.
 
-\end{document}
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro.html b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro.html
deleted file mode 100644 (file)
index 131c5bf..0000000
+++ /dev/null
@@ -1,702 +0,0 @@
-<a name="Intro"></a>
-<h1>Introduction</h1>
-
-<P>
-In real life, most partial differential equations are really systems
-of equations. Accordingly, the solutions are usually
-vector-valued. The deal.II library supports such problems, and we will show
-that that is mostly rather simple. The only more complicated problems
-are in assembling matrix and right hand side, but these are easily
-understood as well. 
-
-<P>
-In the example, we will want to solve the elastic equations. They are
-an extension to Laplace's equation with a vector-valued solution that
-describes the displacement in each space direction of a rigid body
-which is subject to a force. Of course, the force is also
-vector-valued, meaning that in each point it has a direction and an
-absolute value. The elastic equations are the following:
-<!-- MATH
- \begin{displaymath}
--
-  \partial_j (c_{ijkl} \partial_k u_l)
-  =
-  f_i,
-  \qquad
-  i=1\ldots d,
-\end{displaymath}
- -->
-<P></P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="248" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img1.png"
- ALT="$\displaystyle -
-\partial_j (c_{ijkl} \partial_k u_l)
-=
-f_i,
-\qquad
-i=1\ldots d,
-$">
-</DIV><P></P>
-where the values <IMG
- WIDTH="33" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img2.png"
- ALT="$ c_{ijkl}$"> are the stiffness coefficients and
-will usually depend on the space coordinates. In
-many cases, one knows that the material under consideration is
-isotropic, in which case by introduction of the two coefficients
-<IMG
- WIDTH="13" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-8.data/intro/img3.png"
- ALT="$ \lambda$"> and <IMG
- WIDTH="14" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img4.png"
- ALT="$ \mu$"> the coefficient tensor reduces to
-<!-- MATH
- \begin{displaymath}
-c_{ijkl}
-  =
-  \lambda \delta_{ij} \delta_{kl} + 
-  \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}).
-\end{displaymath}
- -->
-<P></P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="241" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img5.png"
- ALT="$\displaystyle c_{ijkl}
-=
-\lambda \delta_{ij} \delta_{kl} +
-\mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}).
-$">
-</DIV><P></P>
-
-<P>
-The elastic equations can then be rewritten in much simpler a form:
-<!-- MATH
- \begin{displaymath}
--
-   \nabla \lambda (\div\vec u)
-   -
-   (\nabla \cdot \mu \nabla) \vec u
-   -
-   \div\mu (\nabla \vec u)^T
-   =
-   \vec f,
-\end{displaymath}
- -->
-<P></P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="309" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img6.png"
- ALT="$\displaystyle -
-\nabla \lambda (\div\vec u)
--
-(\nabla \cdot \mu \nabla) \vec u
--
-\div\mu (\nabla \vec u)^T
-=
-\vec f,
-$">
-</DIV><P></P>
-and the respective bilinear form is then
-<!-- MATH
- \begin{displaymath}
-a(\vec u, \vec v) =
-  \left(
-    \lambda \div\vec u, \div\vec v
-  \right)_\Omega
-  +
-  \sum_{i,j}
-  \left(
-    \mu \partial_i u_j, \partial_i v_j
-  \right)_\Omega,
-  +
-  \sum_{i,j}
-  \left(
-    \mu \partial_i u_j, \partial_j v_i
-  \right)_\Omega,
-\end{displaymath}
- -->
-<P></P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="477" HEIGHT="52" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img7.png"
- ALT="$\displaystyle a(\vec u, \vec v) =
-\left(
-\lambda \div\vec u, \div\vec v
-\right)...
-...\Omega,
-+
-\sum_{i,j}
-\left(
-\mu \partial_i u_j, \partial_j v_i
-\right)_\Omega,
-$">
-</DIV><P></P>
-or also writing the first term a sum over components:
-<!-- MATH
- \begin{displaymath}
-a(\vec u, \vec v) =
-  \sum_{i,j}
-  \left(
-    \lambda \partial_l u_l, \partial_k v_k
-  \right)_\Omega
-  +
-  \sum_{k,l}
-  \left(
-    \mu \partial_i u_j, \partial_i v_j
-  \right)_\Omega,
-  +
-  \sum_{i,j}
-  \left(
-    \mu \partial_i u_j, \partial_j v_i
-  \right)_\Omega.
-\end{displaymath}
- -->
-<P></P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="492" HEIGHT="53" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img8.png"
- ALT="$\displaystyle a(\vec u, \vec v) =
-\sum_{i,j}
-\left(
-\lambda \partial_l u_l, \pa...
-...\Omega,
-+
-\sum_{i,j}
-\left(
-\mu \partial_i u_j, \partial_j v_i
-\right)_\Omega.
-$">
-</DIV><P></P>
-
-<P>
-How do we now assemble the matrix for such an equation? The first thing we
-need is some knowledge about how the shape functions work in the case of
-vector-valued finite elements. Basically, this comes down to the following:
-let <IMG
- WIDTH="14" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
- SRC="step-8.data/intro/img9.png"
- ALT="$ n$"> be the number of shape functions for the scalar finite element of
-which we build the vector element (for example, we will use bilinear functions
-for each component of the vector-valued finite element, so the scalar finite
-element is the <TT>FEQ1</TT> element which we have used in previous examples
-already, and <IMG
- WIDTH="43" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
- SRC="step-8.data/intro/img10.png"
- ALT="$ n=4$"> in two space dimensions). Further, let <IMG
- WIDTH="19" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
- SRC="step-8.data/intro/img11.png"
- ALT="$ N$"> be the number of
-shape functions for the vector element; in two space dimensions, we need <IMG
- WIDTH="14" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
- SRC="step-8.data/intro/img9.png"
- ALT="$ n$">
-shape functions for each component of the vector, so <IMG
- WIDTH="57" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-8.data/intro/img12.png"
- ALT="$ N=2n$">. Then, the <IMG
- WIDTH="10" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-8.data/intro/img13.png"
- ALT="$ i$">th
-shape function of the vector element has the form
-<!-- MATH
- \begin{displaymath}
-\Phi_i(\vec x) = \varphi_{base(i)}(\vec x)\ \vec e_{comp(i)},
-\end{displaymath}
- -->
-<P></P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="200" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img14.png"
- ALT="$\displaystyle \Phi_i(\vec x) = \varphi_{base(i)}(\vec x) \vec e_{comp(i)},
-$">
-</DIV><P></P>
-where <IMG
- WIDTH="16" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img15.png"
- ALT="$ e_l$"> is the <IMG
- WIDTH="9" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-8.data/intro/img16.png"
- ALT="$ l$">th unit vector, <IMG
- WIDTH="58" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img17.png"
- ALT="$ comp(i)$"> is the function that tells
-us which component of <IMG
- WIDTH="21" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img18.png"
- ALT="$ \Phi_i$"> is the one that is nonzero (for
-each vector shape function, only one component is nonzero, and all others are
-zero). <!-- MATH
- $\varphi_{base(i)}(x)$
- -->
-<IMG
- WIDTH="76" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img19.png"
- ALT="$ \varphi_{base(i)}(x)$"> describes the space dependence of the shape
-function, which is taken to be the <IMG
- WIDTH="52" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img20.png"
- ALT="$ base(i)$">-th shape function of the scalar
-element. Of course, while <IMG
- WIDTH="10" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-8.data/intro/img13.png"
- ALT="$ i$"> is in the range <!-- MATH
- $0,\ldots,N-1$
- -->
-<IMG
- WIDTH="89" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img21.png"
- ALT="$ 0,\ldots,N-1$">, the functions
-<IMG
- WIDTH="58" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img17.png"
- ALT="$ comp(i)$"> and <IMG
- WIDTH="52" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img20.png"
- ALT="$ base(i)$"> have the ranges <IMG
- WIDTH="27" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img22.png"
- ALT="$ 0,1$"> (in 2D) and <!-- MATH
- $0,\ldots,n-1$
- -->
-<IMG
- WIDTH="84" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img23.png"
- ALT="$ 0,\ldots,n-1$">,
-respectively. 
-
-<P>
-For example (though this sequence of shape functions is not
-guaranteed, and you should not rely on it), 
-the following layout could be used by the library:
-<DIV ALIGN="CENTER">
-</DIV><P></P>
-<DIV ALIGN="CENTER"><!-- MATH
- \begin{multline*}
-\Phi_0(\vec x) =
-  \begin{pmatrix}
-    \varphi_0(\vec x) \\0
-  \end{pmatrix},
-  \qquad
-  \Phi_1(\vec x) = 
-  \begin{pmatrix}
-    0 \\\varphi_0(\vec x)
-  \end{pmatrix},
-  \\
-  \Phi_2(\vec x) = 
-  \begin{pmatrix}
-    \varphi_1(\vec x) \\0
-  \end{pmatrix},
-  \qquad
-  \Phi_3(\vec x) = 
-  \begin{pmatrix}
-    0 \\\varphi_1(\vec x)
-  \end{pmatrix},
-  \ldots
-\end{multline*}
- -->
-<IMG
- WIDTH="522" HEIGHT="94" ALIGN="BOTTOM" BORDER="0"
- SRC="step-8.data/intro/img24.png"
- ALT="\begin{multline*}
-\Phi_0(\vec x) =
-\begin{pmatrix}
-\varphi_0(\vec x)  0
-\...
-... \begin{pmatrix}
-0  \varphi_1(\vec x)
-\end{pmatrix},
-\ldots
-\end{multline*}"></DIV>
-<BR CLEAR="ALL">
-<P><P></P>
-<DIV ALIGN="CENTER">
-</DIV>
-where here
-<!-- MATH
- \begin{displaymath}
-comp(0)=0, \quad  comp(1)=1, \quad  comp(2)=0, \quad  comp(3)=1, \quad  \ldots
-\end{displaymath}
- -->
-<P></P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="459" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img25.png"
- ALT="$\displaystyle comp(0)=0, \quad comp(1)=1, \quad comp(2)=0, \quad comp(3)=1, \quad \ldots
-$">
-</DIV><P></P>
-<!-- MATH
- \begin{displaymath}
-base(0)=0, \quad  base(1)=0, \quad  base(2)=1, \quad  base(3)=1, \quad  \ldots
-\end{displaymath}
- -->
-<P></P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="433" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img26.png"
- ALT="$\displaystyle base(0)=0, \quad base(1)=0, \quad base(2)=1, \quad base(3)=1, \quad \ldots
-$">
-</DIV><P></P>
-
-<P>
-In all but very rare cases, you will not need to know which shape function
-<!-- MATH
- $\varphi_{base(i)}$
- -->
-<IMG
- WIDTH="54" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img27.png"
- ALT="$ \varphi_{base(i)}$"> of the scalar element belongs to a shape function <IMG
- WIDTH="21" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img18.png"
- ALT="$ \Phi_i$">
-of the vector element. Let us therefore define
-<!-- MATH
- \begin{displaymath}
-\phi_i = \varphi_{base(i)}
-\end{displaymath}
- -->
-<P></P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="90" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img28.png"
- ALT="$\displaystyle \phi_i = \varphi_{base(i)}
-$">
-</DIV><P></P>
-by which we can write the vector shape function as
-<!-- MATH
- \begin{displaymath}
-\Phi_i(\vec x) = \phi_{i}(\vec x)\ \vec e_{comp(i)}.
-\end{displaymath}
- -->
-<P></P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="164" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img29.png"
- ALT="$\displaystyle \Phi_i(\vec x) = \phi_{i}(\vec x) \vec e_{comp(i)}.
-$">
-</DIV><P></P>
-You can now safely forget about the function <IMG
- WIDTH="52" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img20.png"
- ALT="$ base(i)$">, at least for the rest
-of this example program.
-
-<P>
-Now using this vector shape functions, we can write the discrete finite
-element solution as
-<!-- MATH
- \begin{displaymath}
-\vec u_h(\vec x) =
-  \sum_i \Phi_i(\vec x)\ u_i
-\end{displaymath}
- -->
-<P></P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="150" HEIGHT="48" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img30.png"
- ALT="$\displaystyle \vec u_h(\vec x) =
-\sum_i \Phi_i(\vec x) u_i
-$">
-</DIV><P></P>
-with scalar coefficients <IMG
- WIDTH="19" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img31.png"
- ALT="$ u_i$">. If we define an analog function <IMG
- WIDTH="22" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img32.png"
- ALT="$ \vec v_h$"> as
-test function, we can write the discrete problem as follows: Find coefficients
-<IMG
- WIDTH="19" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img31.png"
- ALT="$ u_i$"> such that
-<!-- MATH
- \begin{displaymath}
-a(\vec u_h, \vec v_h) = (\vec f, \vec v_h)
-  \qquad
-  \forall \vec v_h.
-\end{displaymath}
- -->
-<P></P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="197" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img33.png"
- ALT="$\displaystyle a(\vec u_h, \vec v_h) = (\vec f, \vec v_h)
-\qquad
-\forall \vec v_h.
-$">
-</DIV><P></P>
-
-<P>
-If we insert the definition of the bilinear form and the representation of
-<IMG
- WIDTH="22" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img34.png"
- ALT="$ \vec u_h$"> and <IMG
- WIDTH="22" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img32.png"
- ALT="$ \vec v_h$"> into this formula:
-<DIV ALIGN="CENTER">
-</DIV><P></P>
-<DIV ALIGN="CENTER"><!-- MATH
- \begin{multline*}
-\sum_{i,j}
-    u_i v_j
-  \sum_{k,l}
-  \left\{
-  \left(
-    \lambda \partial_l (\Phi_i)_l, \partial_k (\Phi_j)_k
-  \right)_\Omega
-  +
-  \left(
-    \mu \partial_l (\Phi_i)_k, \partial_l (\Phi_j)_k
-  \right)_\Omega
-  +
-  \left(
-    \mu \partial_l (\Phi_i)_k, \partial_k (\Phi_j)_l
-  \right)_\Omega  
-  \right\}
-\\
-=
-  \sum_j v_j
-  \sum_l
-  \left(
-    f_l,
-    (\Phi_j)_l
-  \right)_\Omega.
-\end{multline*}
- -->
-<IMG
- WIDTH="560" HEIGHT="97" ALIGN="BOTTOM" BORDER="0"
- SRC="step-8.data/intro/img35.png"
- ALT="\begin{multline*}
-\sum_{i,j}
-u_i v_j
-\sum_{k,l}
-\left\{
-\left(
-\lambda \pa...
-...=
-\sum_j v_j
-\sum_l
-\left(
-f_l,
-(\Phi_j)_l
-\right)_\Omega.
-\end{multline*}"></DIV>
-<BR CLEAR="ALL">
-<P><P></P>
-<DIV ALIGN="CENTER">
-</DIV>
-We note that here and in the following, the indices <IMG
- WIDTH="25" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img36.png"
- ALT="$ k,l$"> run over spatial
-directions, i.e. <!-- MATH
- $0\le k,l < d$
- -->
-<IMG
- WIDTH="84" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img37.png"
- ALT="$ 0\le k,l &lt; d$">, and that indices <IMG
- WIDTH="24" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img38.png"
- ALT="$ i,j$"> run over degrees
-of freedoms.
-
-<P>
-The local stiffness matrix on cell <IMG
- WIDTH="19" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
- SRC="step-8.data/intro/img39.png"
- ALT="$ K$"> therefore has the following entries:
-<!-- MATH
- \begin{displaymath}
-A^K_{ij}
-  =
-  \sum_{k,l}
-  \left\{
-  \left(
-    \lambda \partial_l (\Phi_i)_l, \partial_k (\Phi_j)_k
-  \right)_K
-  +
-  \left(
-    \mu \partial_l (\Phi_i)_k, \partial_l (\Phi_j)_k
-  \right)_K
-  +
-  \left(
-    \mu \partial_l (\Phi_i)_k, \partial_k (\Phi_j)_l
-  \right)_K
-  \right\},
-\end{displaymath}
- -->
-<P></P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="567" HEIGHT="54" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img40.png"
- ALT="$\displaystyle A^K_{ij}
-=
-\sum_{k,l}
-\left\{
-\left(
-\lambda \partial_l (\Phi_i)_...
-...
-+
-\left(
-\mu \partial_l (\Phi_i)_k, \partial_k (\Phi_j)_l
-\right)_K
-\right\},
-$">
-</DIV><P></P>
-where <IMG
- WIDTH="24" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img38.png"
- ALT="$ i,j$"> now are local degrees of freedom and therefore <!-- MATH
- $0\le i,j < N$
- -->
-<IMG
- WIDTH="89" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img41.png"
- ALT="$ 0\le i,j &lt; N$">. 
-In these formulas, we always take some component of the vector shape functions
-<IMG
- WIDTH="21" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img18.png"
- ALT="$ \Phi_i$">, which are of course given as follows (see their definition):
-<!-- MATH
- \begin{displaymath}
-(\Phi_i)_l = \phi_i \delta_{l,comp(i)},
-\end{displaymath}
- -->
-<P></P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="139" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img42.png"
- ALT="$\displaystyle (\Phi_i)_l = \phi_i \delta_{l,comp(i)},
-$">
-</DIV><P></P>
-with the Kronecker symbol <!-- MATH
- $\delta_{nm}$
- -->
-<IMG
- WIDTH="31" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img43.png"
- ALT="$ \delta_{nm}$">. Due to this, we can delete some of
-the sums over <IMG
- WIDTH="13" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-8.data/intro/img44.png"
- ALT="$ k$"> and <IMG
- WIDTH="9" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-8.data/intro/img16.png"
- ALT="$ l$">:
-<DIV ALIGN="CENTER">
-</DIV><P></P>
-<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
-<TR VALIGN="MIDDLE">
-<TD NOWRAP ALIGN="RIGHT"><IMG
- WIDTH="28" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img45.png"
- ALT="$\displaystyle A^K_{ij}$"></TD>
-<TD NOWRAP ALIGN="LEFT"><IMG
- WIDTH="293" HEIGHT="53" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img46.png"
- ALT="$\displaystyle = \sum_{k,l} \Bigl\{ \left( \lambda \partial_l \phi_i \delta_{l,comp(i)}, \partial_k \phi_j \delta_{k,comp(j)} \right)_K$"></TD>
-<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
-&nbsp;&nbsp;&nbsp;</TD></TR>
-<TR VALIGN="MIDDLE">
-<TD>&nbsp;</TD>
-<TD NOWRAP ALIGN="LEFT"><IMG
- WIDTH="587" HEIGHT="45" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img47.png"
- ALT="$\displaystyle \qquad\qquad + \left( \mu \partial_l \phi_i \delta_{k,comp(i)}, ...
-..._i \delta_{k,comp(i)}, \partial_k \phi_j \delta_{l,comp(j)} \right)_K \Bigr\}$"></TD>
-<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
-&nbsp;&nbsp;&nbsp;</TD></TR>
-<TR VALIGN="MIDDLE">
-<TD>&nbsp;</TD>
-<TD NOWRAP ALIGN="LEFT"><IMG
- WIDTH="656" HEIGHT="50" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img48.png"
- ALT="$\displaystyle = \left( \lambda \partial_{comp(i)} \phi_i, \partial_{comp(j)} \p...
-...j)} + \left( \mu \partial_{comp(j)} \phi_i, \partial_{comp(i)} \phi_j \right)_K$"></TD>
-<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
-&nbsp;&nbsp;&nbsp;</TD></TR>
-<TR VALIGN="MIDDLE">
-<TD>&nbsp;</TD>
-<TD NOWRAP ALIGN="LEFT"><IMG
- WIDTH="638" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img49.png"
- ALT="$\displaystyle = \left( \lambda \partial_{comp(i)} \phi_i, \partial_{comp(j)} \p...
-...)} + \left( \mu \partial_{comp(j)} \phi_i, \partial_{comp(i)} \phi_j \right)_K.$"></TD>
-<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
-&nbsp;&nbsp;&nbsp;</TD></TR>
-</TABLE></DIV>
-<BR CLEAR="ALL"><P></P>
-<DIV ALIGN="CENTER">
-</DIV>
-
-<P>
-Likewise, the contribution of cell <IMG
- WIDTH="19" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
- SRC="step-8.data/intro/img39.png"
- ALT="$ K$"> to the right hand side vector is
-<DIV ALIGN="CENTER">
-</DIV><P></P>
-<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
-<TR VALIGN="MIDDLE">
-<TD NOWRAP ALIGN="RIGHT"><IMG
- WIDTH="26" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img50.png"
- ALT="$\displaystyle f^K_j$"></TD>
-<TD NOWRAP ALIGN="LEFT"><IMG
- WIDTH="126" HEIGHT="49" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img51.png"
- ALT="$\displaystyle = \sum_l \left( f_l, (\Phi_j)_l \right)_K$"></TD>
-<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
-&nbsp;&nbsp;&nbsp;</TD></TR>
-<TR VALIGN="MIDDLE">
-<TD>&nbsp;</TD>
-<TD NOWRAP ALIGN="LEFT"><IMG
- WIDTH="171" HEIGHT="49" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img52.png"
- ALT="$\displaystyle = \sum_l \left( f_l, \phi_j \delta_{l,comp(j)} \right)_K$"></TD>
-<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
-&nbsp;&nbsp;&nbsp;</TD></TR>
-<TR VALIGN="MIDDLE">
-<TD>&nbsp;</TD>
-<TD NOWRAP ALIGN="LEFT"><IMG
- WIDTH="132" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
- SRC="step-8.data/intro/img53.png"
- ALT="$\displaystyle = \left( f_{comp(j)}, \phi_j \right)_K.$"></TD>
-<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
-&nbsp;&nbsp;&nbsp;</TD></TR>
-</TABLE></DIV>
-<BR CLEAR="ALL"><P></P>
-<DIV ALIGN="CENTER">
-</DIV>
-
-<P>
-This is the form in which we will implement the local stiffness matrix and
-right hand side vectors.
-
-<P>
-As a final note: in the step-17 example program, we will revisit the elastic
-problem laid out here, and will show how to solve it in parallel on a cluster
-of computers. The resulting program will thus be able to solve this problem to
-significantly higher accuracy, and more efficiently if this is required.
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img1.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img1.png
deleted file mode 100644 (file)
index e5a9af7..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img1.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img10.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img10.png
deleted file mode 100644 (file)
index eea1a39..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img10.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img11.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img11.png
deleted file mode 100644 (file)
index d83f12d..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img11.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img12.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img12.png
deleted file mode 100644 (file)
index d19bd13..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img12.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img13.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img13.png
deleted file mode 100644 (file)
index 476cca5..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img13.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img14.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img14.png
deleted file mode 100644 (file)
index b978646..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img14.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img15.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img15.png
deleted file mode 100644 (file)
index 22d8bae..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img15.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img16.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img16.png
deleted file mode 100644 (file)
index aa6e1ef..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img16.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img17.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img17.png
deleted file mode 100644 (file)
index 07e4cac..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img17.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img18.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img18.png
deleted file mode 100644 (file)
index 0727ffe..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img18.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img19.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img19.png
deleted file mode 100644 (file)
index 7b6baca..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img19.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img2.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img2.png
deleted file mode 100644 (file)
index 395cc90..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img2.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img20.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img20.png
deleted file mode 100644 (file)
index 7a2a88a..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img20.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img21.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img21.png
deleted file mode 100644 (file)
index 956b02e..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img21.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img22.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img22.png
deleted file mode 100644 (file)
index 3624d7a..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img22.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img23.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img23.png
deleted file mode 100644 (file)
index 1e1887b..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img23.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img24.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img24.png
deleted file mode 100644 (file)
index 5d72b40..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img24.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img25.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img25.png
deleted file mode 100644 (file)
index 8ccd086..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img25.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img26.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img26.png
deleted file mode 100644 (file)
index 5907cfb..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img26.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img27.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img27.png
deleted file mode 100644 (file)
index ebdcf95..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img27.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img28.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img28.png
deleted file mode 100644 (file)
index 3b3f259..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img28.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img29.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img29.png
deleted file mode 100644 (file)
index 45c0745..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img29.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img3.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img3.png
deleted file mode 100644 (file)
index 37193e5..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img3.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img30.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img30.png
deleted file mode 100644 (file)
index 74761a6..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img30.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img31.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img31.png
deleted file mode 100644 (file)
index 91e5b8a..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img31.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img32.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img32.png
deleted file mode 100644 (file)
index 447b2b4..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img32.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img33.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img33.png
deleted file mode 100644 (file)
index f39740a..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img33.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img34.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img34.png
deleted file mode 100644 (file)
index 1ef99ac..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img34.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img35.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img35.png
deleted file mode 100644 (file)
index b98b242..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img35.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img36.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img36.png
deleted file mode 100644 (file)
index 3fb28df..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img36.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img37.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img37.png
deleted file mode 100644 (file)
index 7d6cee8..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img37.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img38.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img38.png
deleted file mode 100644 (file)
index 3667791..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img38.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img39.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img39.png
deleted file mode 100644 (file)
index 7a60877..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img39.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img4.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img4.png
deleted file mode 100644 (file)
index 8a250a5..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img4.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img40.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img40.png
deleted file mode 100644 (file)
index e9a39fc..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img40.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img41.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img41.png
deleted file mode 100644 (file)
index 02dca49..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img41.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img42.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img42.png
deleted file mode 100644 (file)
index c69cecb..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img42.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img43.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img43.png
deleted file mode 100644 (file)
index 5155155..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img43.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img44.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img44.png
deleted file mode 100644 (file)
index 7a3a3c1..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img44.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img45.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img45.png
deleted file mode 100644 (file)
index ab7b84f..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img45.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img46.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img46.png
deleted file mode 100644 (file)
index 6f67f57..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img46.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img47.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img47.png
deleted file mode 100644 (file)
index 891ad13..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img47.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img48.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img48.png
deleted file mode 100644 (file)
index 6796d46..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img48.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img49.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img49.png
deleted file mode 100644 (file)
index 95e64b3..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img49.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img5.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img5.png
deleted file mode 100644 (file)
index 4f8f19e..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img5.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img50.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img50.png
deleted file mode 100644 (file)
index 2634846..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img50.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img51.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img51.png
deleted file mode 100644 (file)
index 51d9bb1..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img51.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img52.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img52.png
deleted file mode 100644 (file)
index 774f423..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img52.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img53.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img53.png
deleted file mode 100644 (file)
index 0375eaf..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img53.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img6.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img6.png
deleted file mode 100644 (file)
index 186ec08..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img6.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img7.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img7.png
deleted file mode 100644 (file)
index aae9f16..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img7.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img8.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img8.png
deleted file mode 100644 (file)
index 93db3eb..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img8.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img9.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img9.png
deleted file mode 100644 (file)
index 7570727..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-8.data/intro/img9.png and /dev/null differ

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.