generate_complete_bernstein_basis(const unsigned int degree)
{
std::vector<Polynomials::Polynomial<number>> v;
+ v.reserve(degree + 1);
for (unsigned int i = 0; i < degree + 1; ++i)
v.push_back(PolynomialsBernstein<number>(i, degree));
return v;
DEAL_II_HOST_DEVICE Tensor<rank_, dim, Number> &
Tensor<rank_, dim, Number>::operator/=(const OtherNumber &s)
{
- if constexpr (std::is_integral<
- typename ProductType<Number, OtherNumber>::type>::value ||
+ if constexpr (std::is_integral_v<
+ typename ProductType<Number, OtherNumber>::type> ||
std::is_same_v<Number, Differentiation::SD::Expression>)
{
// recurse over the base objects
#include <deal.II/matrix_free/shape_info.h>
#include <deal.II/matrix_free/tensor_product_point_kernels.h>
+#include <algorithm>
#include <array>
#include <limits>
#include <numeric>
*/
const long double subexpr0 = -eta * x2 + x0 * (eta - 1);
const long double xi_denominator0 = eta * x3 - x1 * (eta - 1) + subexpr0;
- const long double max_x = std::max(std::max(std::abs(x0), std::abs(x1)),
- std::max(std::abs(x2), std::abs(x3)));
+ const long double max_x =
+ std::max({std::abs(x0), std::abs(x1), std::abs(x2), std::abs(x3)});
if (std::abs(xi_denominator0) > 1e-10 * max_x)
{
else
{
const long double max_y =
- std::max(std::max(std::abs(y0), std::abs(y1)),
- std::max(std::abs(y2), std::abs(y3)));
+ std::max({std::abs(y0), std::abs(y1), std::abs(y2), std::abs(y3)});
const long double subexpr1 = -eta * y2 + y0 * (eta - 1);
const long double xi_denominator1 =
eta * y3 - y1 * (eta - 1) + subexpr1;
template <typename BlockVectorType, bool Constness>
inline Iterator<BlockVectorType, Constness> &
- Iterator<BlockVectorType, Constness>::operator=(const Iterator &c)
- {
- parent = c.parent;
- global_index = c.global_index;
- index_within_block = c.index_within_block;
- current_block = c.current_block;
- next_break_forward = c.next_break_forward;
- next_break_backward = c.next_break_backward;
-
- return *this;
- }
+ Iterator<BlockVectorType, Constness>::operator=(const Iterator &c) =
+ default;
template <int n_components_, int dim, int spacedim, typename Number>
FEPointEvaluationBase<n_components_, dim, spacedim, Number>::
- FEPointEvaluationBase(FEPointEvaluationBase &&other) noexcept
- : n_q_batches(other.n_q_batches)
- , n_q_points(other.n_q_points)
- , n_q_points_scalar(other.n_q_points_scalar)
- , mapping(other.mapping)
- , fe(other.fe)
- , poly(other.poly)
- , use_linear_path(other.use_linear_path)
- , renumber(other.renumber)
- , solution_renumbered(other.solution_renumbered)
- , solution_renumbered_vectorized(other.solution_renumbered_vectorized)
- , values(other.values)
- , gradients(other.gradients)
- , dofs_per_component(other.dofs_per_component)
- , dofs_per_component_face(other.dofs_per_component_face)
- , component_in_base_element(other.component_in_base_element)
- , nonzero_shape_function_component(other.nonzero_shape_function_component)
- , update_flags(other.update_flags)
- , fe_values(other.fe_values)
- , mapping_info_on_the_fly(std::move(other.mapping_info_on_the_fly))
- , mapping_info(other.mapping_info)
- , current_cell_index(other.current_cell_index)
- , current_face_number(other.current_face_number)
- , fast_path(other.fast_path)
- , must_reinitialize_pointers(other.must_reinitialize_pointers)
- , is_interior(other.is_interior)
-{}
+ FEPointEvaluationBase(FEPointEvaluationBase &&other) noexcept = default;
* Copy assignment.
*/
AdditionalData &
- operator=(const AdditionalData &other)
- {
- tasks_parallel_scheme = other.tasks_parallel_scheme;
- tasks_block_size = other.tasks_block_size;
- mapping_update_flags = other.mapping_update_flags;
- mapping_update_flags_boundary_faces =
- other.mapping_update_flags_boundary_faces;
- mapping_update_flags_inner_faces = other.mapping_update_flags_inner_faces;
- mapping_update_flags_faces_by_cells =
- other.mapping_update_flags_faces_by_cells;
- mg_level = other.mg_level;
- store_plain_indices = other.store_plain_indices;
- initialize_indices = other.initialize_indices;
- initialize_mapping = other.initialize_mapping;
- overlap_communication_computation =
- other.overlap_communication_computation;
- hold_all_faces_to_owned_cells = other.hold_all_faces_to_owned_cells;
- cell_vectorization_category = other.cell_vectorization_category;
- cell_vectorization_categories_strict =
- other.cell_vectorization_categories_strict;
- allow_ghosted_vectors_in_loops = other.allow_ghosted_vectors_in_loops;
- store_ghost_cells = other.store_ghost_cells;
- communicator_sm = other.communicator_sm;
-
- return *this;
- }
+ operator=(const AdditionalData &other) = default;
/**
* Set the scheme for task parallelism. There are four options available.
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/vector.h>
+#include <algorithm>
#include <vector>
DEAL_II_NAMESPACE_OPEN
// We permit different numbers of matrices, vectors and DoF index vectors.
// So we have to be a bit permissive here.
constexpr const int max_index =
- std::max(std::max(n_matrices, n_vectors), n_dof_indices);
+ std::max({n_matrices, n_vectors, n_dof_indices});
(void)max_index;
Assert(index < max_index, ExcIndexRange(index, 0, max_index));
for (unsigned int c_other = 0; c_other < child; ++c_other)
{
- auto matrix_other = fe.get_restriction_matrix(c_other, ref_case);
+ const auto &matrix_other = fe.get_restriction_matrix(c_other, ref_case);
for (unsigned int i = 0; i < fe.n_dofs_per_cell(); ++i)
{
if (fe.restriction_is_additive(i) == true)
bubble_shapes.push_back(Polynomials::LagrangeEquidistant(1, 1));
bubble_shapes.push_back(Polynomials::LagrangeEquidistant(2, 1));
+ pols.reserve(dim);
for (unsigned int d = 0; d < dim; ++d)
pols.push_back(bubble_shapes);
// In 2d, the only q_ij polynomials we will use are 31,32,13,23
std::vector<Polynomials::Polynomial<double>> Q_shapes;
Q_shapes.push_back(Polynomials::LagrangeEquidistant(1, 0));
Q_shapes.push_back(Polynomials::LagrangeEquidistant(1, 1));
+ pols.reserve(dim);
for (unsigned int d = 0; d < dim; ++d)
pols.push_back(Q_shapes);
std::vector<unsigned int> column_widths(n_cols, 0);
for (unsigned int j = 0; j < n_cols; ++j)
{
- std::string key = sel_columns[j];
+ const std::string &key = sel_columns[j];
const std::map<std::string, Column>::const_iterator col_iter =
columns.find(key);
Assert(col_iter != columns.end(), ExcInternalError());
// header for each column. enumerate columns starting with 1
for (unsigned int j = 0; j < n_cols; ++j)
{
- std::string key = sel_columns[j];
+ const std::string &key = sel_columns[j];
out << "# " << j + 1 << ": " << key << '\n';
}
break;
for (unsigned int j = 0; j < n_cols; ++j)
{
- std::string key = sel_columns[j];
+ const std::string &key = sel_columns[j];
// avoid `column[key]'
const std::map<std::string, Column>::const_iterator col_iter =
columns.find(key);
const unsigned int n_polynomials = polynomials.size();
boost::container::small_vector<ndarray<double, 5, dim>, 10> values_1d(
n_polynomials);
- if constexpr (std::is_same<
- PolynomialType,
- dealii::Polynomials::Polynomial<double>>::value)
+ if constexpr (std::is_same_v<PolynomialType,
+ dealii::Polynomials::Polynomial<double>>)
{
std::array<double, dim> point_array;
for (unsigned int d = 0; d < dim; ++d)
index_map_inverse[index_map[i]] = i;
std::vector<unsigned int> renumber_base;
+ renumber_base.reserve(tensor_polys.n());
for (unsigned int i = 0; i < tensor_polys.n(); ++i)
renumber_base.push_back(renumber[i]);
index_map_inverse[index_map[i]] = i;
std::vector<unsigned int> renumber_base;
+ renumber_base.reserve(tensor_polys.n());
for (unsigned int i = 0; i < tensor_polys.n(); ++i)
renumber_base.push_back(renumber[i]);
#include <boost/iostreams/copy.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/random.hpp>
+
+#include <algorithm>
#undef BOOST_BIND_GLOBAL_PLACEHOLDERS
#ifdef DEAL_II_WITH_ZLIB
// make sure our conversion from fractional coordinates to
// Integers work as expected, namely our cast (LongDouble)max_int
- const int min_bits =
- std::min(bits_per_dim,
- std::min(std::numeric_limits<Integer>::digits,
- std::numeric_limits<LongDouble>::digits));
+ const int min_bits = std::min({bits_per_dim,
+ std::numeric_limits<Integer>::digits,
+ std::numeric_limits<LongDouble>::digits});
// based on that get the maximum integer:
const Integer max_int = (min_bits == std::numeric_limits<Integer>::digits ?
this->dof_handler->locally_owned_dofs());
for (unsigned int i = 0; i < n_cpu; ++i)
{
- const IndexSet iset = locally_owned_dofs_per_processor[i];
+ const IndexSet &iset = locally_owned_dofs_per_processor[i];
for (types::global_dof_index ind = 0; ind < iset.n_elements();
ind++)
{
for (unsigned int i = 0; i < child_cells.size(); ++i)
{
const typename DoFHandler<dim, spacedim>::active_cell_iterator
- cell_col_child = child_cells[i];
+ &cell_col_child = child_cells[i];
const unsigned int dofs_per_cell_row =
cell_row->get_fe().n_dofs_per_cell();
const unsigned int dofs_per_cell_col =
// same polynomial degree.
std::vector<std::pair<unsigned int, unsigned int>> identities;
+ identities.reserve(std::min(fe_nedelec_other->degree, this->degree));
for (unsigned int i = 0;
i < std::min(fe_nedelec_other->degree, this->degree);
++i)
for (unsigned int i = 0; i < this->n_dofs_per_cell(); ++i)
constant_modes(d, i) = true;
std::vector<unsigned int> components;
+ components.reserve(dim);
for (unsigned int d = 0; d < dim; ++d)
components.push_back(d);
return std::pair<Table<2, bool>, std::vector<unsigned int>>(constant_modes,
std::vector<std::pair<unsigned int, unsigned int>> result;
+ result.reserve(this->degree - 1);
for (unsigned int i = 0; i < this->degree - 1; ++i)
result.emplace_back(i, i);
std::vector<std::pair<unsigned int, unsigned int>> result;
+ result.reserve(this->n_dofs_per_quad(face_no));
for (unsigned int i = 0; i < this->n_dofs_per_quad(face_no); ++i)
result.emplace_back(i, i);
// increasingly. Thus we return a vector of pairs for the first N-1, where
// N is minimum number of dofs_per_line for each FE_Q_Hierarchical.
std::vector<std::pair<unsigned int, unsigned int>> res;
+ res.reserve(std::min(this_dpl, other_dpl));
for (unsigned int i = 0; i < std::min(this_dpl, other_dpl); ++i)
res.emplace_back(i, i);
// increasingly. Thus we return a vector of pairs for the first N-1, where
// N is minimum number of dofs_per_line for each FE_Q_Hierarchical.
std::vector<std::pair<unsigned int, unsigned int>> res;
+ res.reserve(std::min(this_dpq, other_dpq));
for (unsigned int i = 0; i < std::min(this_dpq, other_dpq); ++i)
res.emplace_back(i, i);
for (unsigned int i = 0; i < this->n_dofs_per_cell(); ++i)
constant_modes(d, i) = true;
std::vector<unsigned int> components;
+ components.reserve(dim);
for (unsigned int d = 0; d < dim; ++d)
components.push_back(d);
return std::pair<Table<2, bool>, std::vector<unsigned int>>(constant_modes,
std::vector<std::pair<unsigned int, unsigned int>> result;
+ result.reserve(this->degree - 1);
for (unsigned int i = 0; i < this->degree - 1; ++i)
result.emplace_back(i, i);
std::vector<std::pair<unsigned int, unsigned int>> result;
+ result.reserve(this->n_dofs_per_quad(face_no));
for (unsigned int i = 0; i < this->n_dofs_per_quad(face_no); ++i)
result.emplace_back(i, i);
// (number_points) equidistant points.
const double theta = 2 * numbers::PI / number_points;
// first point is leading edge then counterclockwise
+ circle_points.reserve(number_points);
for (unsigned int i = 0; i < number_points; ++i)
circle_points.emplace_back(center[0] - radius * cos(i * theta),
center[1] - radius * sin(i * theta));
{+1, +1, +1}}};
// Start with the shell bounded by two nested cubes
+ vertices.reserve(8);
for (unsigned int i = 0; i < 8; ++i)
vertices.push_back(p + hexahedron[i] * irad);
for (unsigned int i = 0; i < 8; ++i)
{-1, +1, +1}, //
{+1, +1, +1}}};
+ vertices.reserve(8);
for (unsigned int i = 0; i < 8; ++i)
vertices.push_back(p + hexahedron[i] * irad);
for (unsigned int i = 0; i < 6; ++i)
const double delta_h = height / (n_slices - 1);
std::vector<double> slices_z_values;
+ slices_z_values.reserve(n_slices);
for (unsigned int i = 0; i < n_slices; ++i)
slices_z_values.push_back(i * delta_h);
extrude_triangulation(
data_names.emplace_back("level_subdomain");
data_names.emplace_back("proc_writing");
- const auto reference_cells = tria.get_reference_cells();
+ const auto &reference_cells = tria.get_reference_cells();
AssertDimension(reference_cells.size(), 1);
pos += 1;
const unsigned int n_procs =
Utilities::MPI::n_mpi_processes(tr->get_mpi_communicator());
+ filenames.reserve(n_procs);
for (unsigned int i = 0; i < n_procs; ++i)
filenames.push_back(filename_without_extension.substr(pos) +
".proc" + Utilities::int_to_string(i, 4) +
face_no,
cell->combined_face_orientation(face_no),
n_points);
+ line_points.reserve(n_points);
for (unsigned int i = 0; i < n_points; ++i)
line_points.push_back(
mapping->transform_unit_to_real_cell(
v0),
u1 = mapping->transform_real_to_unit_cell(cell,
v1);
+ line_points.reserve(n_points);
for (unsigned int i = 0; i < n_points; ++i)
line_points.push_back(
mapping->transform_unit_to_real_cell(
if ((merged_b_boxes.size() > max_boxes) && (spacedim > 1))
{
std::vector<double> volumes;
+ volumes.reserve(merged_b_boxes.size());
for (unsigned int i = 0; i < merged_b_boxes.size(); ++i)
volumes.push_back(merged_b_boxes[i].volume());
#include <boost/container/small_vector.hpp>
+#include <algorithm>
#include <cmath>
#include <limits>
#include <memory>
vertices[1].distance(p),
vertices[2].distance(p),
vertices[3].distance(p)}};
- const double max_distance = std::max(std::max(distances[0], distances[1]),
- std::max(distances[2], distances[3]));
+ const double max_distance =
+ std::max({distances[0], distances[1], distances[2], distances[3]});
// We need to find two tangential vectors to the given point p, but we do
// not know how the point is oriented against the face. We guess the two
levels.reserve(other_tria.levels.size());
- for (unsigned int level = 0; level < other_tria.levels.size(); ++level)
+ for (const auto &level : other_tria.levels)
levels.push_back(
std::make_unique<internal::TriangulationImplementation::TriaLevel>(
- *other_tria.levels[level]));
+ *level));
number_cache = other_tria.number_cache;
#include <deal.II/grid/tria_iterator.h>
#include <deal.II/grid/tria_levels.h>
+#include <algorithm>
#include <array>
#include <cmath>
#include <limits>
this->line(lines[axis][2])->diameter(),
this->line(lines[axis][3])->diameter()};
- return std::max(std::max(lengths[0], lengths[1]),
- std::max(lengths[2], lengths[3]));
+ return std::max({lengths[0], lengths[1], lengths[2], lengths[3]});
}
unsigned int>>
temp;
+ temp.reserve(this->coarse_cells.size());
for (unsigned int i = 0; i < this->coarse_cells.size(); ++i)
temp.emplace_back(this->coarse_cell_index_to_coarse_cell_id[i],
this->coarse_cells[i],
{
std::vector<QCollection<q_dim>> q_collections;
+ q_collections.reserve(q_collection.size());
for (unsigned int q = 0; q < q_collection.size(); ++q)
q_collections.emplace_back(q_collection[q]);
// Since we already know the function values at the interval ends we
// might as well check these for min/max too.
const double function_min =
- std::min(std::min(left_value, right_value), value_bounds.first);
+ std::min({left_value, right_value, value_bounds.first});
// If the functions is positive there are no roots.
if (function_min > 0)
return;
const double function_max =
- std::max(std::max(left_value, right_value), value_bounds.second);
+ std::max({left_value, right_value, value_bounds.second});
// If the function is negative there are no roots.
if (function_max < 0)
#include <deal.II/numerics/derivative_approximation.h>
+#include <algorithm>
#include <cmath>
DEAL_II_NAMESPACE_OPEN
}
}
- return std::max(std::fabs(EE[0]),
- std::max(std::fabs(EE[1]), std::fabs(EE[2])));
+ return std::max({std::fabs(EE[0]), std::fabs(EE[1]), std::fabs(EE[2])});
}
auto neighbor_ptr = active_neighbors.begin();
for (; neighbor_ptr != active_neighbors.end(); ++neighbor_ptr)
{
- const auto neighbor = *neighbor_ptr;
+ const auto &neighbor = *neighbor_ptr;
// reinit FE values object...
x_fe_midpoint_value.reinit(neighbor);
// the GridTools function does not cater for
// a vector of points, and does not seem to
// be intrinsicly faster than this method.
+ new_solution_indices.reserve(dof_handler->get_fe(0).n_components());
for (unsigned int component = 0;
component < dof_handler->get_fe(0).n_components();
component++)
current_cell[point]->get_dof_indices(local_dof_indices);
std::vector<types::global_dof_index> new_solution_indices;
+ new_solution_indices.reserve(dof_handler->get_fe(0).n_components());
for (unsigned int component = 0;
component < dof_handler->get_fe(0).n_components();
component++)
// finite element, the smoothness estimation algorithm tends to produce
// stable results.
std::vector<unsigned int> n_coefficients_per_direction;
+ n_coefficients_per_direction.reserve(fe_collection.size());
for (unsigned int i = 0; i < fe_collection.size(); ++i)
n_coefficients_per_direction.push_back(fe_collection[i].degree + 2);
// element, the smoothness estimation algorithm tends to produce stable
// results.
std::vector<unsigned int> n_coefficients_per_direction;
+ n_coefficients_per_direction.reserve(fe_collection.size());
for (unsigned int i = 0; i < fe_collection.size(); ++i)
n_coefficients_per_direction.push_back(fe_collection[i].degree + 2);