* element. Views are discussed in the
* @ref vector_valued module.
*
+ * This class allows to query the
+ * value and divergence of
+ * (components of) shape functions
+ * and solutions representing
+ * symmetric tensors. The
+ * divergence of a symmetric tensor
+ * $S_{ij}, 0\le i,j<\text{dim}$ is
+ * defined as
+ * $d_i = \sum_j \frac{\partial S_{ij}{\partial x_j},
+ * 0\le i<\text{dim}$,
+ * which due to the symmetry of the tensor is also
+ * $d_i = \sum_j \frac{\partial S_{ji}{\partial x_j}$.
+ * In other words, it due to the symmetry
+ * of $S$ it does not matter whether
+ * we apply the nabla operator by row
+ * or by column to get the divergence.
+ *
* @ingroup feaccess vector_valued
*
* @author Andrew McBride, 2009
* of the finite element representing a symmetric second-order
* tensor, the divergence of
* course is a * <code>Tensor@<1,dim@></code>.
+ *
+ * See the general discussion
+ * of this class for a
+ * definition of the
+ * divergence.
*/
typedef Tensor<1, spacedim> divergence_type;
* this view, for the shape function
* and quadrature point selected by the
* arguments.
+ *
+ * See the general discussion
+ * of this class for a
+ * definition of the
+ * divergence.
*/
divergence_type
divergence(const unsigned int shape_function,
* information can be obtained from
* FEValuesBase::get_function_gradients,
* of course.
+ *
+ * See the general discussion
+ * of this class for a
+ * definition of the
+ * divergence.
*/
template <class InputVector>
void get_function_divergences(const InputVector& fe_function,
/// @name Geometry of the cell
//@{
-
+
/**
* Position of the <tt>i</tt>th
* quadrature point in real space.
void transform (std::vector<Tensor<1,spacedim> >& transformed,
const std::vector<Tensor<1,dim> >& original,
MappingType mapping) const;
-
+
/**
* @deprecated Use
* normal_vector() instead.
/// @name Access to the raw data
//@{
-
+
/**
* Constant reference to the
* selected mapping object.
}
}
-
+
template <int dim, int spacedim>
inline
typename SymmetricTensor<2, dim, spacedim>::divergence_type