* -k^2 &0
* \end{pmatrix}
* \f]
- * and $y(0)=(0, k)$.
+ * and $y(0)=(0, k)^T$.
*
* The exact solution is $y_0(t) = \sin(k t)$, $y_1(t) = y_0'(t) = k \cos(k
*t)$, $y_1'(t) = -k^2 \sin(k t)$.
*
* SUNDIALS::ARKode<VectorType> ode;
*
- * const double kappa = 1.0;
+ * const double k = 1.0;
*
- * ode.explicit_function = [kappa] (double,
- * const VectorType &y,
- * VectorType &ydot) -> int
+ * ode.explicit_function = [k] (const double / * time * /,
+ * const VectorType &y,
+ * VectorType &ydot)
* {
* ydot[0] = y[1];
- * ydot[1] = -kappa*kappa*y[0];
- * return 0;
+ * ydot[1] = -k*k*y[0];
* };
*
* Vector<double> y(2);
- * y[1] = kappa;
+ * y[1] = k;
*
* ode.solve_ode(y);
* @endcode
+ *
+ * In practice, you would of course at least want to set the end time up
+ * to which the time integrator should run. In the example code shown here,
+ * it is taken from the default value defined by ARKode::AdditionalData.
*/
template <typename VectorType = Vector<double>>
class ARKode