//---------------------------------------------------------------------------
// $Id$
//
-// Copyright (C) 2010 by the deal.II authors
+// Copyright (C) 2010, 2011 by the deal.II authors
//
// This file is subject to QPL and may not be distributed
// without copyright and license information. Please refer
* \f[
* \int_F uv\,ds \quad \text{or} \quad \int_F \mathbf u\cdot \mathbf v\,ds
* \f]
+ *
+ * @ingroup Integrators
+ * @author Guido Kanschat
+ * @date 2008, 2009, 2010
*/
template <int dim>
void mass_matrix (
* \quad \text{or} \quad
* \int_F \mathbf f\cdot \mathbf v\,ds
* \f]
+ *
+ * @ingroup Integrators
+ * @author Guido Kanschat
+ * @date 2008, 2009, 2010
*/
template <int dim>
void L2 (
*
* Using appropriate weights, this term can be used to penalize
* violation of conformity in <i>H<sup>1</sup></i>.
+ *
+ * @ingroup Integrators
+ * @author Guido Kanschat
+ * @date 2008, 2009, 2010
*/
template <int dim>
void jump_matrix (
//---------------------------------------------------------------------------
// $Id$
//
-// Copyright (C) 2010 by the deal.II authors
+// Copyright (C) 2010, 2011 by the deal.II authors
//
// This file is subject to QPL and may not be distributed
// without copyright and license information. Please refer
* Here, $\gamma$ is the <tt>penalty</tt> parameter suitably computed
* with compute_penalty().
*
+ * @ingroup Integrators
* @author Guido Kanschat
* @date 2008, 2009, 2010
*/
* <tt>Dinput</tt>, respectively. <i>g</i> is the inhomogeneous
* boundary value in the argument <tt>data</tt>. $\gamma$ is the usual
* penalty parameter.
+ *
+ * @ingroup Integrators
+ * @author Guido Kanschat
+ * @date 2008, 2009, 2010
*/
template <int dim>
void nitsche_residual (
* the same on both sides. If factors differ, note that the penalty
* parameter has to be computed accordingly.
*
+ * @ingroup Integrators
* @author Guido Kanschat
* @date 2008, 2009, 2010
*/
//---------------------------------------------------------------------------
// $Id$
//
-// Copyright (C) 2010 by the deal.II authors
+// Copyright (C) 2010, 2011 by the deal.II authors
//
// This file is subject to QPL and may not be distributed
// without copyright and license information. Please refer
* functions for computing cell matrices and cell residuals for the
* Laplacian operator, as well as functions for the weak boundary
* conditions by Nitsche or the interior penalty discontinuous
- * Galerkin method. The namespace Maxwell would do the same for
+ * Galerkin method. The namespace Maxwell does the same for
* curl-curl type problems.
*
- * There is a namespace Differential containing general
- * first order differential operators like divergence, gradient and
- * curl, and their traces on faces.
- *
* The namespace L2 contains functions for mass matrices and
* <i>L<sup>2</sup></i>-inner products.
*
typename MeshWorker::IntegrationInfo<dim>& info)
{
Laplace::cell_matrix(dinfo.matrix(0,false).matrix, info.fe_values(0));
- Differential::div_primal_matrix(dinfo.matrix(1,false).matrix, info.fe_values(0), info.fe_values(1));
+ Divergence::cell_matrix(dinfo.matrix(1,false).matrix, info.fe_values(0), info.fe_values(1));
L2::cell_matrix(dinfo.matrix(2,false).matrix, info.fe_values(1));
}
* @endcode
* \nabla\!\times\! v \,dx
* @f]
*
+ * @ingroup Integrators
* @author Guido Kanschat
* @date 2011
*/
*
* This is the standard curl operator in 3D and the scalar curl in 2D.
*
+ * @ingroup Integrators
* @author Guido Kanschat
* @date 2011
*/