SparsityPattern & block_list,
const DoFHandler<dim, spacedim> &dof_handler,
const unsigned int level,
- const std::vector<bool> & selected_dofs = std::vector<bool>(),
+ const std::vector<bool> & selected_dofs = {},
const types::global_dof_index offset = 0);
/**
const DoFHandlerType & dof_handler,
std::vector<types::global_dof_index> &dofs_per_component,
const bool vector_valued_once = false,
- std::vector<unsigned int> target_component = std::vector<unsigned int>());
+ std::vector<unsigned int> target_component = {});
/**
* Count the degrees of freedom in each block. This function is similar to
Triangulation<dim, spacedim> & tria,
const Point<spacedim> & origin,
const std::array<Tensor<1, spacedim>, dim> &edges,
- const std::vector<unsigned int> &subdivisions = std::vector<unsigned int>(),
+ const std::vector<unsigned int> &subdivisions = {},
const bool colorize = false);
/**
find_closest_vertex(
const MeshType<dim, spacedim> &mesh,
const Point<spacedim> & p,
- const std::vector<bool> & marked_vertices = std::vector<bool>());
+ const std::vector<bool> & marked_vertices = {});
/**
* Find and return the index of the used vertex (or marked vertex) in a
const Mapping<dim, spacedim> & mapping,
const MeshType<dim, spacedim> &mesh,
const Point<spacedim> & p,
- const std::vector<bool> & marked_vertices = std::vector<bool>());
+ const std::vector<bool> & marked_vertices = {});
/**
find_active_cell_around_point(
const MeshType<dim, spacedim> &mesh,
const Point<spacedim> & p,
- const std::vector<bool> & marked_vertices = std::vector<bool>());
+ const std::vector<bool> & marked_vertices = {});
/**
* Find and return an iterator to the active cell that surrounds a given
const Mapping<dim, spacedim> & mapping,
const MeshType<dim, spacedim> &mesh,
const Point<spacedim> & p,
- const std::vector<bool> & marked_vertices = std::vector<bool>());
+ const std::vector<bool> & marked_vertices = {});
/**
* A version of the previous function that exploits an already existing
const std::vector<std::vector<Tensor<1, spacedim>>> &vertex_to_cell_centers,
const typename MeshType<dim, spacedim>::active_cell_iterator &cell_hint =
typename MeshType<dim, spacedim>::active_cell_iterator(),
- const std::vector<bool> &marked_vertices = std::vector<bool>());
+ const std::vector<bool> &marked_vertices = {});
/**
* A version of the previous function where we use that mapping on a given
const Point<spacedim> & p,
const typename Triangulation<dim, spacedim>::active_cell_iterator &
cell_hint = typename Triangulation<dim, spacedim>::active_cell_iterator(),
- const std::vector<bool> &marked_vertices = std::vector<bool>());
+ const std::vector<bool> &marked_vertices = {});
/**
* A variant of the previous find_active_cell_around_point() function that,
const MeshType<dim, spacedim> &mesh,
const Point<spacedim> & p,
const double tolerance = 1e-12,
- const std::vector<bool> & marked_vertices = std::vector<bool>());
+ const std::vector<bool> & marked_vertices = {});
/**
* Return a list of all descendants of the given cell that are active. For
count_dofs_per_block(
const DoFHandlerType & dof_handler,
std::vector<std::vector<types::global_dof_index>> &dofs_per_block,
- std::vector<unsigned int> target_block = std::vector<unsigned int>());
+ std::vector<unsigned int> target_block = {});
/**
* Count the dofs component-wise on each level.
const DoFHandler<dim, spacedim> & mg_dof,
std::vector<std::vector<types::global_dof_index>> &result,
const bool only_once = false,
- std::vector<unsigned int> target_component = std::vector<unsigned int>());
+ std::vector<unsigned int> target_component = {});
/**
* Generate a list of those degrees of freedom at the boundary of the domain
Vector<number> & rhs_vector,
std::vector<types::global_dof_index> & dof_to_boundary_mapping,
const Function<spacedim, number> *const weight = 0,
- std::vector<unsigned int> component_mapping = std::vector<unsigned int>());
+ std::vector<unsigned int> component_mapping = {});
/**
Vector<number> & rhs_vector,
std::vector<types::global_dof_index> & dof_to_boundary_mapping,
const Function<spacedim, number> *const a = nullptr,
- std::vector<unsigned int> component_mapping = std::vector<unsigned int>());
+ std::vector<unsigned int> component_mapping = {});
/**
* Same function as above, but for hp objects.
Vector<number> & rhs_vector,
std::vector<types::global_dof_index> & dof_to_boundary_mapping,
const Function<spacedim, number> *const a = nullptr,
- std::vector<unsigned int> component_mapping = std::vector<unsigned int>());
+ std::vector<unsigned int> component_mapping = {});
/**
* Same function as above, but for hp objects.
Vector<number> & rhs_vector,
std::vector<types::global_dof_index> & dof_to_boundary_mapping,
const Function<spacedim, number> *const a = nullptr,
- std::vector<unsigned int> component_mapping = std::vector<unsigned int>());
+ std::vector<unsigned int> component_mapping = {});
/**
* Assemble the Laplace matrix. If no coefficient is given (i.e., if the
& boundary_functions,
const Quadrature<dim - 1> & q,
std::map<types::global_dof_index, number> &boundary_values,
- std::vector<unsigned int> component_mapping = std::vector<unsigned int>());
+ std::vector<unsigned int> component_mapping = {});
/**
* Call the project_boundary_values() function, see above, with
& boundary_function,
const Quadrature<dim - 1> & q,
std::map<types::global_dof_index, number> &boundary_values,
- std::vector<unsigned int> component_mapping = std::vector<unsigned int>());
+ std::vector<unsigned int> component_mapping = {});
/**
* Same as above, but for objects of type hp::DoFHandler
& boundary_functions,
const hp::QCollection<dim - 1> & q,
std::map<types::global_dof_index, number> &boundary_values,
- std::vector<unsigned int> component_mapping = std::vector<unsigned int>());
+ std::vector<unsigned int> component_mapping = {});
/**
* Call the project_boundary_values() function, see above, with
& boundary_function,
const hp::QCollection<dim - 1> & q,
std::map<types::global_dof_index, number> &boundary_values,
- std::vector<unsigned int> component_mapping = std::vector<unsigned int>());
+ std::vector<unsigned int> component_mapping = {});
/**
* Project a function to the boundary of the domain, using the given
& boundary_functions,
const Quadrature<dim - 1> &q,
AffineConstraints<number> &constraints,
- std::vector<unsigned int> component_mapping = std::vector<unsigned int>());
+ std::vector<unsigned int> component_mapping = {});
/**
* Call the project_boundary_values() function, see above, with
& boundary_function,
const Quadrature<dim - 1> &q,
AffineConstraints<number> &constraints,
- std::vector<unsigned int> component_mapping = std::vector<unsigned int>());
+ std::vector<unsigned int> component_mapping = {});
/**
template <typename VectorType>
void
subtract_mean_value(VectorType & v,
- const std::vector<bool> &p_select = std::vector<bool>());
+ const std::vector<bool> &p_select = {});
/**