]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Add a first version of the step-37 tutorial program that implements a matrix-free...
authorkronbichler <kronbichler@0785d39b-7218-0410-832d-ea1e28bc413d>
Mon, 31 Aug 2009 15:33:08 +0000 (15:33 +0000)
committerkronbichler <kronbichler@0785d39b-7218-0410-832d-ea1e28bc413d>
Mon, 31 Aug 2009 15:33:08 +0000 (15:33 +0000)
git-svn-id: https://svn.dealii.org/trunk@19355 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-37/Makefile [new file with mode: 0644]
deal.II/examples/step-37/doc/intro.dox [new file with mode: 0644]
deal.II/examples/step-37/doc/results.dox [new file with mode: 0644]
deal.II/examples/step-37/step-37.cc [new file with mode: 0644]

diff --git a/deal.II/examples/step-37/Makefile b/deal.II/examples/step-37/Makefile
new file mode 100644 (file)
index 0000000..feef622
--- /dev/null
@@ -0,0 +1,156 @@
+# $Id$
+
+# For the small projects Makefile, you basically need to fill in only
+# four fields.
+#
+# The first is the name of the application. It is assumed that the
+# application name is the same as the base file name of the single C++
+# file from which the application is generated.
+target = $(basename $(shell echo step-*.cc))
+
+# The second field determines whether you want to run your program in
+# debug or optimized mode. The latter is significantly faster, but no
+# run-time checking of parameters and internal states is performed, so
+# you should set this value to `on' while you develop your program,
+# and to `off' when running production computations.
+debug-mode = on
+
+
+# As third field, we need to give the path to the top-level deal.II
+# directory. You need to adjust this to your needs. Since this path is
+# probably the most often needed one in the Makefile internals, it is
+# designated by a single-character variable, since that can be
+# reference using $D only, i.e. without the parentheses that are
+# required for most other parameters, as e.g. in $(target).
+D = ../../
+
+
+# The last field specifies the names of data and other files that
+# shall be deleted when calling `make clean'. Object and backup files,
+# executables and the like are removed anyway. Here, we give a list of
+# files in the various output formats that deal.II supports.
+clean-up-files = *gmv *gnuplot *gpl *eps *pov *vtk
+
+
+
+
+#
+#
+# Usually, you will not need to change anything beyond this point.
+#
+#
+# The next statement tell the `make' program where to find the
+# deal.II top level directory and to include the file with the global
+# settings
+include $D/common/Make.global_options
+
+
+
+
+# Since the whole project consists of only one file, we need not
+# consider difficult dependencies. We only have to declare the
+# libraries which we want to link to the object file, and there need
+# to be two sets of libraries: one for the debug mode version of the
+# application and one for the optimized mode. Here we have selected
+# the versions for 2d. Note that the order in which the libraries are
+# given here is important and that your applications won't link
+# properly if they are given in another order.
+#
+# You may need to augment the lists of libraries when compiling your
+# program for other dimensions, or when using third party libraries
+libs.g   = $(lib-deal2-2d.g) \
+          $(lib-lac.g)      \
+           $(lib-base.g)
+libs.o   = $(lib-deal2-2d.o) \
+          $(lib-deal2-3d.o) \
+          $(lib-lac.o)      \
+           $(lib-base.o)
+
+
+# We now use the variable defined above which switch between debug and
+# optimized mode to select the set of libraries to link with. Included
+# in the list of libraries is the name of the object file which we
+# will produce from the single C++ file. Note that by default we use
+# the extension .g.o for object files compiled in debug mode and .o for
+# object files in optimized mode (or whatever the local default on your
+# system is instead of .o).
+ifeq ($(debug-mode),on)
+  libraries = $(target).g.$(OBJEXT) $(libs.g)
+else
+  libraries = $(target).$(OBJEXT) $(libs.o)
+endif
+
+
+# Now comes the first production rule: how to link the single object
+# file produced from the single C++ file into the executable. Since
+# this is the first rule in the Makefile, it is the one `make' selects
+# if you call it without arguments.
+$(target) : $(libraries)
+       @echo ============================ Linking $@
+       @$(CXX) -o $@$(EXEEXT) $^ $(LIBS) $(LDFLAGS)
+
+
+# To make running the application somewhat independent of the actual
+# program name, we usually declare a rule `run' which simply runs the
+# program. You can then run it by typing `make run'. This is also
+# useful if you want to call the executable with arguments which do
+# not change frequently. You may then want to add them to the
+# following rule:
+run: $(target)
+       @echo ============================ Running $<
+       @./$(target)$(EXEEXT)
+
+
+# As a last rule to the `make' program, we define what to do when
+# cleaning up a directory. This usually involves deleting object files
+# and other automatically created files such as the executable itself,
+# backup files, and data files. Since the latter are not usually quite
+# diverse, you needed to declare them at the top of this file.
+clean:
+       -rm -f *.$(OBJEXT) *~ Makefile.dep $(target)$(EXEEXT) $(clean-up-files)
+
+
+# Since we have not yet stated how to make an object file from a C++
+# file, we should do so now. Since the many flags passed to the
+# compiler are usually not of much interest, we suppress the actual
+# command line using the `at' sign in the first column of the rules
+# and write the string indicating what we do instead.
+./%.g.$(OBJEXT) :
+       @echo ==============debug========= $(<F)
+       @$(CXX) $(CXXFLAGS.g) -c $< -o $@
+./%.$(OBJEXT) :
+       @echo ==============optimized===== $(<F)
+       @$(CXX) $(CXXFLAGS.o) -c $< -o $@
+
+
+# The following statement tells make that the rules `run' and `clean'
+# are not expected to produce files of the same name as Makefile rules
+# usually do.
+.PHONY: run clean
+
+
+# Finally there is a rule which you normally need not care much about:
+# since the executable depends on some include files from the library,
+# besides the C++ application file of course, it is necessary to
+# re-generate the executable when one of the files it depends on has
+# changed. The following rule to created a dependency file
+# `Makefile.dep', which `make' uses to determine when to regenerate
+# the executable. This file is automagically remade whenever needed,
+# i.e. whenever one of the cc-/h-files changed. Make detects whether
+# to remake this file upon inclusion at the bottom of this file.
+#
+# If the creation of Makefile.dep fails, blow it away and fail
+Makefile.dep: $(target).cc Makefile \
+              $(shell echo $D/*/include/*/*.h)
+       @echo ============================ Remaking $@
+       @$D/common/scripts/make_dependencies  $(INCLUDE) -B. $(target).cc \
+               > $@ \
+         || (rm -f $@ ; false)
+       @if test -s $@ ; then : else rm $@ ; fi
+
+
+# To make the dependencies known to `make', we finally have to include
+# them:
+include Makefile.dep
+
+
diff --git a/deal.II/examples/step-37/doc/intro.dox b/deal.II/examples/step-37/doc/intro.dox
new file mode 100644 (file)
index 0000000..0580cb0
--- /dev/null
@@ -0,0 +1,14 @@
+<a name="Intro"></a>
+<h1>Introduction</h1>
+
+This example shows how a matrix-free method can be implemented for a
+second-order Poisson equation.
+
+<h3>Implementation of a matrix-vector product</h3>
+TODO: Describe how one gets to the piece of code we use below.
+
+<h3>Combination with multigrid</h3>
+TODO: Explain which kind of smoother we can use when we do not have 
+access to the matrix entries.
+
+<h3>Parallization issues</h3>
diff --git a/deal.II/examples/step-37/doc/results.dox b/deal.II/examples/step-37/doc/results.dox
new file mode 100644 (file)
index 0000000..dfc70b7
--- /dev/null
@@ -0,0 +1,47 @@
+<h1>Results</h1>
+
+Since this example solves the same problem as @ref step_5 "step-5", we
+refer to the graphical output there. The only difference between the two is 
+the solver and the implementation of the matrix-vector products. 
+
+The output produced by this program is the following:
+@code
+Cycle 0
+Number of degrees of freedom: 337
+System matrix memory consumption: 0.02781 MBytes.
+Multigrid objects memory consumption: 0.04799 MBytes.
+Convergence in 8 CG iterations.
+
+Cycle 1
+Number of degrees of freedom: 1313
+System matrix memory consumption: 0.103 MBytes.
+Multigrid objects memory consumption: 0.171 MBytes.
+Convergence in 9 CG iterations.
+
+Cycle 2
+Number of degrees of freedom: 5185
+System matrix memory consumption: 0.4019 MBytes.
+Multigrid objects memory consumption: 0.6524 MBytes.
+Convergence in 9 CG iterations.
+
+Cycle 3
+Number of degrees of freedom: 20609
+System matrix memory consumption: 1.594 MBytes.
+Multigrid objects memory consumption: 2.562 MBytes.
+Convergence in 9 CG iterations.
+
+Cycle 4
+Number of degrees of freedom: 82177
+System matrix memory consumption: 6.357 MBytes.
+Multigrid objects memory consumption: 10.18 MBytes.
+Convergence in 9 CG iterations.
+
+Cycle 5
+Number of degrees of freedom: 328193
+System matrix memory consumption: 25.39 MBytes.
+Multigrid objects memory consumption: 40.58 MBytes.
+Convergence in 9 CG iterations.
+@endcode
+
+As in step-16, we see that the number of CG iterations stays constant with 
+increasing number of degrees of freedom.
\ No newline at end of file
diff --git a/deal.II/examples/step-37/step-37.cc b/deal.II/examples/step-37/step-37.cc
new file mode 100644 (file)
index 0000000..83d9fb1
--- /dev/null
@@ -0,0 +1,885 @@
+/* $Id$ */
+/* Author: Martin Kronbichler, Uppsala University, 2009 */
+
+/*    $Id$       */
+/*                                                                */
+/*    Copyright (C) 2009 by the deal.II authors                   */
+/*                                                                */
+/*    This file is subject to QPL and may not be  distributed     */
+/*    without copyright and license information. Please refer     */
+/*    to the file deal.II/doc/license.html for the  text  and     */
+/*    further information on this license.                        */
+
+
+                                // The include files are mostly similar to
+                                // the ones in step-16.
+#include <base/quadrature_lib.h>
+#include <base/function.h>
+#include <base/logstream.h>
+
+#include <lac/vector.h>
+#include <lac/full_matrix.h>
+#include <lac/solver_cg.h>
+#include <lac/precondition.h>
+
+#include <dofs/dof_handler.h>
+#include <dofs/dof_accessor.h>
+#include <dofs/dof_tools.h>
+
+#include <fe/fe_q.h>
+#include <fe/fe_values.h>
+
+#include <grid/tria.h>
+#include <grid/tria_accessor.h>
+#include <grid/tria_iterator.h>
+#include <grid/tria_boundary_lib.h>
+#include <grid/grid_generator.h>
+
+#include <multigrid/multigrid.h>
+#include <multigrid/mg_dof_handler.h>
+#include <multigrid/mg_dof_accessor.h>
+#include <multigrid/mg_transfer.h>
+#include <multigrid/mg_tools.h>
+#include <multigrid/mg_coarse.h>
+#include <multigrid/mg_smoother.h>
+#include <multigrid/mg_matrix.h>
+
+#include <numerics/vectors.h>
+#include <numerics/matrices.h>
+#include <numerics/data_out.h>
+
+#include <fstream>
+#include <sstream>
+
+using namespace dealii;
+
+
+
+                                // @sect3{Equation data.}
+
+                                // We define a variable coefficient
+                                // function for the Poisson problem. It is
+                                // similar to the function in step-5. As a
+                                // difference, we use the formulation
+                                // $\frac{1}{0.1 + \|\bf x\|^2}$ instead of
+                                // a discontinuous one. It is merely to
+                                // demonstrate the possibilities of this
+                                // implemenation, rather than being
+                                // physically reasonable.
+template <int dim>
+class Coefficient : public Function<dim> 
+{
+  public:
+    Coefficient ()  : Function<dim>() {}
+    
+    virtual double value (const Point<dim>   &p,
+                         const unsigned int  component = 0) const;
+    
+    virtual void value_list (const std::vector<Point<dim> > &points,
+                            std::vector<double>            &values,
+                            const unsigned int              component = 0) const;
+};
+
+
+
+template <int dim>
+double Coefficient<dim>::value (const Point<dim> &p,
+                               const unsigned int /*component*/) const 
+{
+  return 1./(0.1+p.square());
+}
+
+
+
+template <int dim>
+void Coefficient<dim>::value_list (const std::vector<Point<dim> > &points,
+                                  std::vector<double>            &values,
+                                  const unsigned int              component) const 
+{
+  Assert (values.size() == points.size(), 
+         ExcDimensionMismatch (values.size(), points.size()));
+  Assert (component == 0, 
+         ExcIndexRange (component, 0, 1));
+
+  const unsigned int n_points = points.size();
+
+  for (unsigned int i=0; i<n_points; ++i)
+    values[i] = 1./(0.1+points[i].square());
+}
+
+
+
+                                // @sect3{Matrix-free implementation.}
+
+                                // Next comes the implemenation of the
+                                // Matrix-Free class. It provides standard
+                                // information we expect for matrices (like
+                                // the size of the matrix), and it is able
+                                // to perform matrix-vector
+                                // multiplications.
+                                // 
+                                // TODO: Use WorkStream for parallelization
+                                // instead of apply_to_subranges, once we
+                                // have realized the best way for doing
+                                // that.
+template <typename number, class Transformation>
+class MatrixFree : public Subscriptor
+{
+public:
+  MatrixFree ();
+
+  void reinit (const unsigned int        n_dofs,
+              const unsigned int        n_cells,
+              const FullMatrix<double> &cell_matrix,
+              const unsigned int        n_points_per_cell);
+
+  void clear();
+
+  unsigned int m () const;
+  unsigned int n () const;
+
+  ConstraintMatrix & get_constraints ();
+
+  void set_local_dof_indices (const unsigned int               cell_no,
+                             const std::vector<unsigned int> &local_dof_indices);
+
+  void set_derivative_data (const unsigned int    cell_no,
+                           const unsigned int    quad_point,
+                           const Transformation &trans_in);
+
+  template <typename number2>
+  void vmult_on_subrange (const unsigned int first_cell,
+                         const unsigned int last_cell,
+                         Vector<number2> &dst,
+                         const Vector<number2> &src) const;
+
+  template <typename number2>
+  void vmult (Vector<number2> &dst,
+             const Vector<number2> &src) const;
+
+  template <typename number2>
+  void Tvmult (Vector<number2> &dst,
+              const Vector<number2> &src) const;
+
+  template <typename number2>
+  void vmult_add (Vector<number2> &dst,
+                 const Vector<number2> &src) const;
+
+  template <typename number2>
+  void Tvmult_add (Vector<number2> &dst,
+                  const Vector<number2> &src) const;
+
+  number el (const unsigned int row, const unsigned int col) const;
+
+  std::size_t memory_consumption () const;
+
+private:
+  FullMatrix<number>      small_matrix;
+  ConstraintMatrix        constraints;
+
+  Table<2,unsigned int>   indices_local_to_global;
+  Table<2,Transformation> derivatives;
+
+  mutable Vector<number>  diagonal_values;
+  mutable bool            diagonal_is_calculated;
+
+  struct SmallMatrixData
+  {
+    unsigned int m;
+    unsigned int n;
+    unsigned int n_points;
+    unsigned int n_comp;
+  };
+  unsigned int            n_dofs, n_cols, n_cells;
+  SmallMatrixData         matrix_data;
+};
+
+
+
+template <typename number, class Transformation>
+MatrixFree<number,Transformation>::MatrixFree ()
+:
+  Subscriptor()
+{}
+
+
+
+template <typename number, class Transformation>
+void MatrixFree<number,Transformation>::
+reinit (const unsigned int        n_dofs_in,
+       const unsigned int        n_cells_in,
+       const FullMatrix<double> &small_matrix_in,
+       const unsigned int        n_points_per_cell)
+{
+  n_dofs = n_dofs_in;
+  n_cells = n_cells_in;
+  small_matrix = small_matrix_in;
+  matrix_data.m = small_matrix.m();
+  matrix_data.n = small_matrix.n();
+  matrix_data.n_points = n_points_per_cell;
+  matrix_data.n_comp   = small_matrix.n()/matrix_data.n_points;
+
+  Assert(matrix_data.n_comp * n_points_per_cell == small_matrix.n(),
+        ExcInternalError());
+
+  derivatives.reinit (n_cells, n_points_per_cell);
+  indices_local_to_global.reinit (n_cells, small_matrix.m());
+  diagonal_is_calculated = false;
+}
+
+
+
+template <typename number, class Transformation>
+void
+MatrixFree<number,Transformation>::clear ()
+{
+  n_dofs = 0;
+  n_cells = 0;
+  small_matrix.reinit(0,0);
+  derivatives.reinit (0,0);
+  indices_local_to_global.reinit(0,0);
+  diagonal_values.reinit (0);
+  constraints.clear();
+  diagonal_is_calculated = false;
+}
+
+
+
+template <typename number, class Transformation>
+unsigned int
+MatrixFree<number,Transformation>::m () const
+{
+  return n_dofs;
+}
+
+
+
+template <typename number, class Transformation>
+unsigned int
+MatrixFree<number,Transformation>::n () const
+{
+  return n_dofs;
+}
+
+
+
+template <typename number, class Transformation>
+ConstraintMatrix &
+MatrixFree<number,Transformation>::get_constraints ()
+{
+  return constraints;
+}
+
+
+
+template <typename number, class Transformation>
+void MatrixFree<number,Transformation>::
+set_local_dof_indices (const unsigned int               cell_no,
+                      const std::vector<unsigned int> &local_dof_indices)
+{
+  Assert (local_dof_indices.size() == matrix_data.m,
+         ExcDimensionMismatch(local_dof_indices.size(),
+                              matrix_data.m));
+  for (unsigned int i=0; i<matrix_data.m; ++i)
+    {
+      Assert (local_dof_indices[i] < n_dofs, ExcInternalError());
+      indices_local_to_global(cell_no,i) = local_dof_indices[i];
+    }
+  diagonal_is_calculated = false;
+}
+
+
+
+template <typename number, class Transformation>
+void MatrixFree<number,Transformation>::
+set_derivative_data (const unsigned int cell_no,
+                    const unsigned int quad_point,
+                    const Transformation &trans_in)
+{
+  derivatives(cell_no,quad_point) = trans_in;
+  diagonal_is_calculated = false;
+}
+
+
+
+template <typename number, class Transformation>
+template <typename number2>
+void 
+MatrixFree<number,Transformation>::
+vmult_on_subrange (const unsigned int    first_cell,
+                  const unsigned int    last_cell,
+                  Vector<number2>       &dst,
+                  const Vector<number2> &src) const
+{
+  FullMatrix<number> solution_cells, solution_points;
+
+  const unsigned int n_chunks = (last_cell-first_cell)/100 + 1;
+  const unsigned int chunk_size = 
+    (last_cell-first_cell)/n_chunks + ((last_cell-first_cell)%n_chunks>0);
+
+  for (unsigned int k=first_cell; k<last_cell; k+=chunk_size)
+    {
+      const unsigned int current_chunk_size = 
+       k+chunk_size>last_cell ? last_cell-k : chunk_size;
+
+      solution_cells.reinit (current_chunk_size,matrix_data.m, true);
+      solution_points.reinit (current_chunk_size,matrix_data.n, true);
+
+      for (unsigned int i=0; i<current_chunk_size; ++i)
+       for (unsigned int j=0; j<matrix_data.m; ++j)
+         solution_cells(i,j) = (number)src(indices_local_to_global(i+k,j));
+
+      solution_cells.mmult (solution_points, small_matrix);
+
+      for (unsigned int i=0; i<current_chunk_size; ++i)
+       for (unsigned int j=0; j<matrix_data.n_points; ++j)
+         derivatives(i+k,j).transform(&solution_points(i, j*matrix_data.n_comp));
+
+      solution_points.mTmult (solution_cells, small_matrix);
+
+      static Threads::Mutex mutex;
+      Threads::Mutex::ScopedLock lock (mutex);
+      for (unsigned int i=0; i<current_chunk_size; ++i)
+       for (unsigned int j=0; j<matrix_data.m; ++j)
+         dst(indices_local_to_global(i+k,j)) += (number2)solution_cells(i,j);
+    }
+}
+
+
+
+template <typename number, class Transformation>
+template <typename number2>
+void 
+MatrixFree<number,Transformation>::vmult (Vector<number2>       &dst,
+                                         const Vector<number2> &src) const
+{
+  dst = 0;
+  vmult_add (dst, src);
+}
+
+
+
+template <typename number, class Transformation>
+template <typename number2>
+void 
+MatrixFree<number,Transformation>::Tvmult (Vector<number2>       &dst,
+                                          const Vector<number2> &src) const
+{
+  dst = 0;
+  Tvmult_add (dst,src);
+}
+
+
+
+template <typename number, class Transformation>
+template <typename number2>
+void 
+MatrixFree<number,Transformation>::vmult_add (Vector<number2>       &dst,
+                                             const Vector<number2> &src) const
+{
+  Vector<number2> src_copy (src);
+  constraints.distribute(src_copy);
+  
+  vmult_on_subrange (0, n_cells, dst, src_copy);
+  constraints.condense (dst);
+
+                                // Need to do this in order to be
+                                // consistent even at constrained
+                                // dofs. Need to find a better solution in
+                                // the future (e.g. by switching to smaller
+                                // vectors that do not contain any
+                                // constrained entries).
+  for (unsigned int i=0; i<n_dofs; ++i)
+    if (constraints.is_constrained(i) == true)
+      dst(i) = el(i,i) * src(i);
+}
+
+
+
+template <typename number, class Transformation>
+template <typename number2>
+void 
+MatrixFree<number,Transformation>::Tvmult_add (Vector<number2>       &dst,
+                                              const Vector<number2> &src) const
+{
+  vmult_add (dst,src);
+}
+
+
+
+template <typename number, class Transformation>
+number
+MatrixFree<number,Transformation>::el (const unsigned int row,
+                                      const unsigned int col) const
+{
+  Assert (row == col, ExcNotImplemented());
+
+  if (diagonal_is_calculated == false)
+    {
+      diagonal_values.reinit (n_dofs);
+      std::vector<number> calculation (matrix_data.n_comp);
+      for (unsigned int cell=0; cell<n_cells; ++cell)
+       for (unsigned int dof=0; dof<matrix_data.m; ++dof)
+         {
+           double diag_value = 0;
+           for (unsigned int j=0; j<matrix_data.n_points; ++j)
+             {
+               for (unsigned int d=0; d<matrix_data.n_comp; ++d)
+                 calculation[d] = small_matrix(dof,j*matrix_data.n_comp+d);
+               derivatives(cell,j).transform(&calculation[0]);
+               for (unsigned int d=0; d<matrix_data.n_comp; ++d)
+                 diag_value += calculation[d]*small_matrix(dof,j*matrix_data.n_comp+d);
+             }
+           diagonal_values(indices_local_to_global(cell,dof)) += diag_value;
+         }
+      diagonal_is_calculated = true;
+    }
+
+  return diagonal_values(row);
+}
+
+
+
+template <typename number, class Transformation>
+std::size_t MatrixFree<number,Transformation>::memory_consumption () const
+{
+  std::size_t glob_size = derivatives.memory_consumption() + 
+    indices_local_to_global.memory_consumption() + 
+    constraints.memory_consumption() +
+    small_matrix.memory_consumption() + sizeof(*this);
+  return glob_size;
+}
+
+
+
+                                // @sect3{Laplace operator.}
+
+                                // This implements the local action of a
+                                // Laplace preconditioner.
+template <int dim,typename number>
+class LaplaceOperator
+{
+public:
+  LaplaceOperator ();
+
+  LaplaceOperator (const Tensor<2,dim> &tensor);
+
+  void transform (number * result) const;
+
+  LaplaceOperator<dim,number>&
+  operator = (const Tensor<2,dim> &tensor);
+
+  number transformation[dim][dim];
+};
+
+template<int dim,typename number>
+LaplaceOperator<dim,number>::LaplaceOperator()
+{}
+
+template<int dim,typename number>
+LaplaceOperator<dim,number>::LaplaceOperator(const Tensor<2,dim> &tensor)
+{
+  *this = tensor;
+}
+
+template <int dim, typename number>
+void LaplaceOperator<dim,number>::transform (number* result) const
+{
+  number temp_result[dim];
+  for (unsigned int d=0; d<dim; ++d)
+    temp_result[d] = result[d];
+  for (unsigned int d=0; d<dim; ++d)
+    {
+      number output = 0;
+      for (unsigned int e=0; e<dim; ++e)
+       output += transformation[d][e] * temp_result[e];
+      result[d] = output;
+    }
+}
+
+template <int dim, typename number>
+LaplaceOperator<dim,number>&
+LaplaceOperator<dim,number>::operator=(const Tensor<2,dim> &tensor)
+{
+  for (unsigned int d=0;d<dim;++d)
+    for (unsigned int e=0;e<dim;++e)
+      transformation[d][e] = tensor[d][e];
+  return *this;
+}
+
+
+
+                                // @sect3{LaplaceProblem class.}
+
+                                // This class is based on the same class in
+                                // step-16. We replaced the
+                                // SparseMatrix<double> class by our
+                                // matrix-free implementation, which means
+                                // that we can skip the sparsity patterns.
+template <int dim>
+class LaplaceProblem 
+{
+  public:
+    LaplaceProblem (const unsigned int degree);
+    void run ();
+    
+  private:
+    void setup_system ();
+    void assemble_system ();
+    void assemble_multigrid ();
+    void solve ();
+    void output_results (const unsigned int cycle) const;
+
+    Triangulation<dim>   triangulation;
+    FE_Q<dim>            fe;
+    MGDoFHandler<dim>    mg_dof_handler;
+
+    MatrixFree<double,LaplaceOperator<dim,double> > system_matrix;
+    typedef MatrixFree<float,LaplaceOperator<dim,float> > MatrixFreeType;
+    MGLevelObject<MatrixFreeType> mg_matrices;
+    FullMatrix<float>             coarse_matrix;
+
+    Vector<double>       solution;
+    Vector<double>       system_rhs;
+};
+
+
+
+template <int dim>
+LaplaceProblem<dim>::LaplaceProblem (const unsigned int degree) :
+                fe (degree),
+               mg_dof_handler (triangulation)
+{}
+
+
+
+                                // This is the function of step-16 with
+                                // relevant changes due to the MatrixFree
+                                // class.
+template <int dim>
+void LaplaceProblem<dim>::setup_system ()
+{
+  system_matrix.clear();
+  mg_matrices.clear();
+
+  mg_dof_handler.distribute_dofs (fe);
+
+  std::cout << "Number of degrees of freedom: "
+           << mg_dof_handler.n_dofs()
+           << std::endl;
+
+  const unsigned int nlevels = triangulation.n_levels();
+  mg_matrices.resize(0, nlevels-1);
+
+  QGauss<dim>  quadrature_formula(fe.degree+1);
+  FEValues<dim> fe_values2 (fe, quadrature_formula, 
+                           update_gradients);
+  Triangulation<dim> tria;
+  GridGenerator::hyper_cube (tria, 0, 1);
+  fe_values2.reinit (tria.begin());
+  FullMatrix<double> data_matrix (fe.dofs_per_cell, 
+                                 quadrature_formula.size()*dim);
+  for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
+    {
+      for (unsigned int j=0; j<quadrature_formula.size(); ++j)
+       {
+         for (unsigned int d=0; d<dim; ++d)
+           data_matrix(i,j*dim+d) = fe_values2.shape_grad(i,j)[d];
+       }
+    }
+  system_matrix.reinit (mg_dof_handler.n_dofs(), triangulation.n_active_cells(),
+                       data_matrix, quadrature_formula.size());
+  VectorTools::interpolate_boundary_values (mg_dof_handler,
+                                           0,
+                                           ZeroFunction<dim>(),
+                                           system_matrix.get_constraints());
+  system_matrix.get_constraints().close();
+  std::cout.precision(4);
+  std::cout << "System matrix memory consumption: " 
+           << (double)system_matrix.memory_consumption()*std::pow(2.,-20.) << " MBytes." 
+           << std::endl;
+
+  solution.reinit (mg_dof_handler.n_dofs());
+  system_rhs.reinit (mg_dof_handler.n_dofs());
+
+                                // Initialize the matrices for the
+                                // multigrid method on all the levels.
+  typename FunctionMap<dim>::type dirichlet_boundary;
+  ZeroFunction<dim>               homogeneous_dirichlet_bc (1);
+  dirichlet_boundary[0] = &homogeneous_dirichlet_bc;
+  std::vector<std::set<unsigned int> > boundary_indices(triangulation.n_levels());
+  MGTools::make_boundary_list (mg_dof_handler,
+                              dirichlet_boundary,
+                              boundary_indices);
+  for (unsigned int level=0;level<nlevels;++level)
+    {
+      mg_matrices[level].reinit(mg_dof_handler.n_dofs(level),
+                               triangulation.n_cells(level),
+                               data_matrix,
+                               quadrature_formula.size());
+      std::set<unsigned int>::iterator bc_it = boundary_indices[level].begin();
+      for ( ; bc_it != boundary_indices[level].end(); ++bc_it)
+       mg_matrices[level].get_constraints().add_line(*bc_it);
+      mg_matrices[level].get_constraints().close();
+    }
+  coarse_matrix.reinit (mg_dof_handler.n_dofs(0),
+                       mg_dof_handler.n_dofs(0));
+}
+
+
+
+template <int dim>
+void LaplaceProblem<dim>::assemble_system () 
+{
+  QGauss<dim>  quadrature_formula(fe.degree+1);
+  MappingQ<dim> mapping (fe.degree);
+  FEValues<dim> fe_values (mapping, fe, quadrature_formula, 
+                          update_values   | update_inverse_jacobians |
+                          update_gradients |
+                           update_quadrature_points | update_JxW_values);
+
+  const unsigned int   dofs_per_cell = fe.dofs_per_cell;
+  const unsigned int   n_q_points    = quadrature_formula.size();
+
+  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+  const Coefficient<dim> coefficient;
+  std::vector<double>    coefficient_values (n_q_points);
+
+  unsigned int cell_no = 0;
+
+  typename DoFHandler<dim>::active_cell_iterator cell = mg_dof_handler.begin_active(),
+                                                endc = mg_dof_handler.end();
+  for (; cell!=endc; ++cell, ++cell_no)
+    {
+      cell->get_dof_indices (local_dof_indices);
+      fe_values.reinit (cell);
+      coefficient.value_list (fe_values.get_quadrature_points(),
+                             coefficient_values);
+
+      system_matrix.set_local_dof_indices (cell_no, local_dof_indices);
+      for (unsigned int q=0; q<n_q_points; ++q)
+       system_matrix.set_derivative_data 
+         (cell_no, q,
+          (transpose(fe_values.inverse_jacobian(q)) * 
+           fe_values.inverse_jacobian(q)) * 
+          fe_values.JxW(q) * coefficient_values[q]);
+
+      for (unsigned int i=0; i<dofs_per_cell; ++i)
+       {
+         double rhs_val = 0;
+         for (unsigned int q=0; q<n_q_points; ++q)
+           rhs_val += (fe_values.shape_value(i,q) * 1.0 *
+                       fe_values.JxW(q));
+         system_rhs(local_dof_indices[i]) += rhs_val;
+       }
+    }
+  system_matrix.get_constraints().condense(system_rhs);
+}
+
+
+                                // Here is another assemble
+                                // function. The integration core is
+                                // the same as above. Only the loop
+                                // goes over all existing cells now
+                                // and the results must be entered
+                                // into the correct matrix.
+
+                                // Since we only do multi-level
+                                // preconditioning, no right-hand
+                                // side is assembled here.
+template <int dim>
+void LaplaceProblem<dim>::assemble_multigrid () 
+{
+  coarse_matrix = 0;
+  QGauss<dim>  quadrature_formula(fe.degree+1);
+  MappingQ<dim> mapping (fe.degree);
+  FEValues<dim> fe_values (mapping, fe, quadrature_formula, 
+                          update_gradients  | update_inverse_jacobians |
+                           update_quadrature_points | update_JxW_values);
+
+  const unsigned int   dofs_per_cell = fe.dofs_per_cell;
+  const unsigned int   n_q_points    = quadrature_formula.size();
+
+  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+  const Coefficient<dim> coefficient;
+  std::vector<double>    coefficient_values (n_q_points);
+
+  std::vector<unsigned int> cell_no(triangulation.n_levels());
+  typename MGDoFHandler<dim>::cell_iterator cell = mg_dof_handler.begin(),
+                                           endc = mg_dof_handler.end();
+  for (; cell!=endc; ++cell)
+    {
+      const unsigned int level = cell->level();
+      cell->get_mg_dof_indices (local_dof_indices);
+      fe_values.reinit (cell);
+      coefficient.value_list (fe_values.get_quadrature_points(),
+                             coefficient_values);
+
+      mg_matrices[level].set_local_dof_indices (cell_no[level], 
+                                               local_dof_indices);
+      for (unsigned int q=0; q<n_q_points; ++q)
+       mg_matrices[level].set_derivative_data 
+         (cell_no[level], q,
+          (transpose(fe_values.inverse_jacobian(q)) * 
+           fe_values.inverse_jacobian(q)) * 
+          fe_values.JxW(q) * coefficient_values[q]);
+
+      ++cell_no[level];
+      if (level == 0)
+       {
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
+           for (unsigned int j=0; j<dofs_per_cell; ++j)
+             {
+               double add_value = 0;
+               for (unsigned int q=0; q<n_q_points; ++q)
+                 add_value += (fe_values.shape_grad(i,q) *
+                               fe_values.shape_grad(j,q) *
+                               coefficient_values[q] *
+                               fe_values.JxW(q));
+               coarse_matrix(local_dof_indices[i],
+                             local_dof_indices[j]) += add_value;
+             }
+       }
+    }
+  for (unsigned int i=0; i<coarse_matrix.m(); ++i)
+    if (mg_matrices[0].get_constraints().is_constrained(i))
+      for (unsigned int j=0; j<coarse_matrix.n(); ++j)
+       if (i!=j)
+         {
+           coarse_matrix(i,j) = 0;
+           coarse_matrix(j,i) = 0;
+         }
+}
+
+
+
+                                // The solution process again looks like
+                                // step-16. We now use a Chebyshev smoother
+                                // instead of SSOR (which is difficult to
+                                // implement if we do not have the matrix
+                                // elements explicitly available).
+template <int dim>
+void LaplaceProblem<dim>::solve () 
+{
+  GrowingVectorMemory<>   vector_memory;
+
+  MGTransferPrebuilt<Vector<double> > mg_transfer;
+  mg_transfer.build_matrices(mg_dof_handler);
+
+  MGCoarseGridHouseholder<float, Vector<double> > mg_coarse;
+  mg_coarse.initialize(coarse_matrix);
+
+  typedef PreconditionChebyshev<MatrixFreeType,Vector<double> > SMOOTHER;
+  MGSmootherPrecondition<MatrixFreeType, SMOOTHER, Vector<double> >
+    mg_smoother(vector_memory);
+
+                                  // Initialize the smoother with our level
+                                  // matrices and the required, additional
+                                  // data for the Chebyshev smoother. Use a
+                                  // higher polynomial degree for higher
+                                  // order elements, since smoothing gets
+                                  // more difficult then. Smooth out a
+                                  // range of
+                                  // $[\lambda_{\max}/8,\lambda_{\max}]$.
+  typename SMOOTHER::AdditionalData smoother_data;
+  smoother_data.smoothing_range = 8.;
+  smoother_data.degree = fe.degree+1;
+  mg_smoother.initialize(mg_matrices, smoother_data);
+
+  MGMatrix<MatrixFreeType, Vector<double> >
+    mg_matrix(&mg_matrices);
+
+  Multigrid<Vector<double> > mg(mg_dof_handler,
+                               mg_matrix,
+                               mg_coarse,
+                               mg_transfer,
+                               mg_smoother,
+                               mg_smoother);
+  PreconditionMG<dim, Vector<double>,
+    MGTransferPrebuilt<Vector<double> > >
+    preconditioner(mg_dof_handler, mg, mg_transfer);
+
+  double multigrid_memory = 
+    (double)mg_matrices.memory_consumption() +
+    (double)mg_transfer.memory_consumption() +
+    (double)coarse_matrix.memory_consumption();
+
+  std::cout << "Multigrid objects memory consumption: " 
+           << multigrid_memory*std::pow(2.,-20.) 
+           << " MBytes." 
+           << std::endl;
+
+                                  // Finally, create the solver
+                                  // object and solve the system
+  SolverControl           solver_control (1000, 1e-12);
+  SolverCG<>              cg (solver_control);
+
+  cg.solve (system_matrix, solution, system_rhs,
+           preconditioner);
+  
+  std::cout << "Convergence in " << solver_control.last_step() 
+           << " CG iterations." << std::endl;
+}
+
+
+
+                                // Here is the data output, which is
+                                // a simplified version of step-5. We
+                                // do a standard vtk output for
+                                // each grid produced in the
+                                // refinement process.
+template <int dim>
+void LaplaceProblem<dim>::output_results (const unsigned int cycle) const
+{
+  DataOut<dim> data_out;
+
+  data_out.attach_dof_handler (mg_dof_handler);
+  data_out.add_data_vector (solution, "solution");
+  data_out.build_patches ();
+
+  std::ostringstream filename;
+  filename << "solution-"
+          << cycle
+          << ".vtk";
+
+  std::ofstream output (filename.str().c_str());
+  data_out.write_vtk (output);
+}
+
+
+
+template <int dim>
+void LaplaceProblem<dim>::run () 
+{
+  for (unsigned int cycle=0; cycle<6; ++cycle)
+    {
+      std::cout << "Cycle " << cycle << std::endl;
+
+      if (cycle == 0)
+       {
+                                          // Generate a simple hyperball grid.
+         GridGenerator::hyper_ball(triangulation);
+         static const HyperBallBoundary<dim> boundary;
+         triangulation.set_boundary (0, boundary);
+         triangulation.refine_global (0);
+       }
+      triangulation.refine_global (1);
+      setup_system ();
+      assemble_system ();
+      assemble_multigrid ();
+      solve ();
+      output_results (cycle);
+      std::cout << std::endl;
+    };
+}
+
+    
+
+int main () 
+{
+  deallog.depth_console (0);
+  LaplaceProblem<2> laplace_problem (2);
+  laplace_problem.run ();
+  
+  return 0;
+}

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.