* applied on a vector, one can write:
* @code
* dealii::SparseMatrix<double> A, B, C;
+ * double k;
* // Setup and assembly...
- * const double k = ...;
*
* const auto op_a = linear_operator(A);
* const auto op_b = linear_operator(B);
*
* For objects of type LinearOperator, all vector space operations, i.e.,
* addition and subtraction, scalar multiplication and composition (of
- * compatible linear operators) are implemented.
+ * compatible linear operators) are implemented:
+ * @code
+ * dealii::LinearOperator op_a, op_b;
+ * double k;
+ *
+ * // vector space addition, subtraction and scalar multiplication
+ * op_a + op_b;
+ * op_a - op_b;
+ * k * op_a;
+ * op_a * k;
+ *
+ * // in-place variants
+ * op_a += op_b;
+ * op_a -= op_b;
+ * op_a *= k;
+ *
+ * // operator composition
+ * op_a * op_b;
+ * op_a *= op_b; // If op_b is an endomorphism of the domain space of op_a
+ * @endcode
*
* block_operator() and block_diagonal_operator() provide further
* encapsulation of individual linear operators into blocked linear
}
/**
- * Concatenation of the LinearOperator with an endomorphism @p second_op
- * on the @p Domain space.
+ * Composition of the LinearOperator with an endomorphism @p second_op
+ * of the @p Domain space.
*/
LinearOperator<Range, Domain> &
operator*=(const LinearOperator<Domain, Domain> &second_op)
/**
* \relates LinearOperator
*
- * Addition of two linear operators @p first_op and @p second_op given
- * by $(\text{first\_op}+\text{second\_op})x:=\text{first\_op}(x)+\text{second\_op}(x)$
+ * Addition of two linear operators @p first_op and @p second_op given by
+ * $(\text{first\_op}+\text{second\_op})x:=\text{first\_op}(x)+\text{second\_op}(x)$
*
* @ingroup LAOperators
*/
/**
* \relates LinearOperator
*
- * Subtraction of two linear operators @p first_op and @p second_op given
- * by $(\text{first\_op}-\text{second\_op})x:=\text{first\_op}(x)-\text{second\_op}(x)$
+ * Subtraction of two linear operators @p first_op and @p second_op given by
+ * $(\text{first\_op}-\text{second\_op})x:=\text{first\_op}(x)-\text{second\_op}(x)$
*
* @ingroup LAOperators
*/
/**
* \relates LinearOperator
*
- * Concatenation of two linear operators @p first_op and @p second_op given
- * by $(\text{first\_op}*\text{second\_op})x:=\text{first\_op}(\text{second\_op}(x))$
+ * Composition of two linear operators @p first_op and @p second_op given by
+ * $(\text{first\_op}*\text{second\_op})x:=\text{first\_op}(\text{second\_op}(x))$
*
* @ingroup LAOperators
*/
// ---------------------------------------------------------------------
//
-// Copyright (C) 2002 - 2014 by the deal.II authors
+// Copyright (C) 2002 - 2015 by the deal.II authors
//
// This file is part of the deal.II library.
//
// ---------------------------------------------------------------------
//
-// Copyright (C) 2001 - 2014 by the deal.II authors
+// Copyright (C) 2001 - 2015 by the deal.II authors
//
// This file is part of the deal.II library.
//