<th>Number of refinements </th><th> $\|u-u_h^\circ\|_{L_2}$ </th><th> Conv. rates </th><th> $|u-u_h|_{H^1}$ </th><th> Conv. rates </th><th> $|u-u_h|_{H^2}$ </th><th> Conv. rates </th>
</tr>
<tr>
- <td> 2 </td><td> 1.539e-02 </td><td> </td><td> 8.528e-02 </td><td> </td><td> 1.602 </td><td> </td>
+ <td> 2 </td><td> 8.780e-03 </td><td> </td><td> 7.095e-02 </td><td> </td><td> 1.645 </td><td> </td>
</tr>
<tr>
- <td> 3 </td><td> 4.563e-03 </td><td> 1.75 </td><td> 2.408e-02 </td><td> 1.82 </td><td> 7.965e-01 </td><td> 1.00 </td>
+ <td> 3 </td><td> 3.515e-03 </td><td> 1.32 </td><td> 2.174e-02 </td><td> 1.70 </td><td> 8.121e-01 </td><td> 1.018 </td>
</tr>
<tr>
- <td> 4 </td><td> 1.250e-03 </td><td> 1.86 </td><td> 6.438e-03 </td><td> 1.90 </td><td> 3.969e-01 </td><td> 1.00 </td>
+ <td> 4 </td><td> 1.103e-03 </td><td> 1.67 </td><td> 6.106e-03 </td><td> 1.83 </td><td> 4.015e-01 </td><td> 1.016 </td>
</tr>
<tr>
- <td> 5 </td><td> 3.277e-04 </td><td> 1.93 </td><td> 1.666e-03 </td><td> 1.94 </td><td> 1.981e-01 </td><td> 1.00 </td>
+ <td> 5 </td><td> 3.084e-04 </td><td> 1.83 </td><td> 1.622e-03 </td><td> 1.91 </td><td> 1.993e-01 </td><td> 1.010 </td>
</tr>
</table>
We can see that the $L_2$ convergence rates are around 2,
match the theoretically expected rates; for the former, we have no
theorem but are not surprised that it is sub-optimal given the remark
in the introduction.
-
+
<h3>Test results on <i>Q<sub>3</sub></i> with <i>γ = p(p+1)</i> </h3>
<th>Number of refinements </th><th> $\|u-u_h^\circ\|_{L_2}$ </th><th> Conv. rates </th><th> $|u-u_h|_{H^1}$ </th><th> Conv. rates </th><th> $|u-u_h|_{H^2}$ </th><th> Conv. rates </th>
</tr>
<tr>
- <td> 2 </td><td> 2.187e-04 </td><td> </td><td> 4.46269e-03 </td><td> </td><td> 1.638e-01 </td><td> </td>
+ <td> 2 </td><td> 2.045e-04 </td><td> </td><td> 4.402e-03 </td><td> </td><td> 1.641e-01 </td><td> </td>
</tr>
<tr>
- <td> 3 </td><td> 1.334e-05 </td><td> 4.03 </td><td> 5.54622e-04 </td><td> 3.00 </td><td> 4.095e-02 </td><td> 2.00 </td>
+ <td> 3 </td><td> 1.312e-05 </td><td> 3.96 </td><td> 5.537e-04 </td><td> 2.99 </td><td> 4.096e-02 </td><td> 2.00 </td>
</tr>
<tr>
- <td> 4 </td><td> 8.273e-07 </td><td> 4.01 </td><td> 6.90599e-05 </td><td> 3.00 </td><td> 1.023e-02 </td><td> 2.00 </td>
+ <td> 4 </td><td> 8.239e-07 </td><td> 3.99 </td><td> 6.904e-05 </td><td> 3.00 </td><td> 1.023e-02 </td><td> 2.00 </td>
</tr>
<tr>
- <td> 5 </td><td> 5.164e-08 </td><td> 4.00 </td><td> 8.62168e-06 </td><td> 3.00 </td><td> 2.558e-03 </td><td> 2.00 </td>
+ <td> 5 </td><td> 5.158e-08 </td><td> 3.99 </td><td> 8.621e-06 </td><td> 3.00 </td><td> 2.558e-03 </td><td> 2.00 </td>
</tr>
</table>
We can see that the $L_2$ convergence rates are around 4,
<th>Number of refinements </th><th> $\|u-u_h^\circ\|_{L_2}$ </th><th> Conv. rates </th><th> $|u-u_h|_{H^1}$ </th><th> Conv. rates </th><th> $|u-u_h|_{H^2}$ </th><th> Conv. rates </th>
</tr>
<tr>
- <td> 2 </td><td> 8.34446e-06 </td><td> </td><td> 0.000239323 </td><td> </td><td> 0.0109785 </td><td> </td>
+ <td> 2 </td><td> 6.510e-06 </td><td> </td><td> 2.215e-04 </td><td> </td><td> 1.275e-02 </td><td> </td>
</tr>
<tr>
- <td> 3 </td><td> 2.98497e-07 </td><td> 4.80 </td><td> 1.63221e-05 </td><td> 3.87 </td><td> 0.0013551 </td><td> 3.01 </td>
+ <td> 3 </td><td> 2.679e-07 </td><td> 4.60 </td><td> 1.569e-05 </td><td> 3.81 </td><td> 1.496e-03 </td><td> 3.09 </td>
</tr>
<tr>
- <td> 4 </td><td> 9.87063e-09 </td><td> 4.91 </td><td> 1.06066e-06 </td><td> 3.94 </td><td> 0.000167898 </td><td> 3.01 </td>
+ <td> 4 </td><td> 9.404e-09 </td><td> 4.83 </td><td> 1.040e-06 </td><td> 3.91 </td><td> 1.774e-04 </td><td> 3.07 </td>
</tr>
<tr>
- <td> 5 </td><td> 7.88939e-10 </td><td> 3.64 </td><td> 6.75478e-08 </td><td> 3.97 </td><td> 2.08912e-05 </td><td> 3.00 </td>
+ <td> 5 </td><td> 7.943e-10 </td><td> 3.56 </td><td> 6.693e-08 </td><td> 3.95 </td><td> 2.150e-05 </td><td> 3.04 </td>
</tr>
</table>
We can see that the $L_2$ norm convergence rates are around 5,
<th>Number of refinements </th><th> $\|u-u_h^\circ\|_{L_2}$ </th><th> Conv. rates </th><th> $|u-u_h|_{H^1}$ </th><th> Conv. rates </th><th> $|u-u_h|_{H^2}$ </th><th> Conv. rates </th>
</tr>
<tr>
- <td> 2 </td><td> 4.86048e-02 </td><td> </td><td> 3.30386e-01 </td><td> </td><td> 4.34917 </td><td> </td>
+ <td> 2 </td><td> 7.350e-02 </td><td> </td><td> 7.323e-01 </td><td> </td><td> 10.343 </td><td> </td>
</tr>
<tr>
- <td> 3 </td><td> 1.29921e-02 </td><td> 1.90 </td><td> 1.4852e-01 </td><td> 1.15 </td><td> 4.01192 </td><td> 0.116 </td>
+ <td> 3 </td><td> 6.798e-03 </td><td> 3.43 </td><td> 1.716e-01 </td><td> 2.09 </td><td>4.836 </td><td> 1.09 </td>
</tr>
<tr>
- <td> 4 </td><td> 3.33539e-03 </td><td> 1.96 </td><td> 7.20252e-02 </td><td> 1.04 </td><td> 3.96138 </td><td> 0.018 </td>
+ <td> 4 </td><td> 9.669e-04 </td><td> 2.81 </td><td> 6.436e-02 </td><td> 1.41 </td><td> 3.590 </td><td> 0.430 </td>
</tr>
<tr>
- <td> 5 </td><td> 8.41058e-04 </td><td> 1.98 </td><td> 3.57705e-02 </td><td> 1.00 </td><td> 3.95719 </td><td> 0.001 </td>
+ <td> 5 </td><td> 1.755e-04 </td><td> 2.46 </td><td> 2.831e-02 </td><td> 1.18 </td><td>3.144 </td><td> 0.19 </td>
</tr>
</table>
-Although $L_2$ norm and $H^1$-seminorm convergence rates of $u$
-follow the theoretical expectations, the $H^2$-seminorm does not seem to converge.
+Although $L_2$ norm convergence rates of $u$ more or less
+follows the theoretical expectations,
+the $H^1$-seminorm and $H^2$-seminorm do not seem to converge as expected.
Comparing results from $\gamma = 1$ and $\gamma = p(p+1)$, it is clear that
$\gamma = p(p+1)$ is a better penalty.
+Given that $\gamma=1$ is already too small for $Q_2$ elements, it may not be surprising that if one repeated the
+experiment with a $Q_3$ element, the results are even more disappointing: One again only obtains convergence
+rates of 2, 1, zero -- i.e., no better than for the $Q_2$ element (although the errors are smaller in magnitude).
+Maybe surprisingly, however, one obtains more or less the expected convergence orders when using $Q_4$
+elements. Regardless, this uncertainty suggests that $\gamma=1$ is at best a risky choice, and at worst an
+unreliable one and that we should choose $\gamma$ larger.
<h3>Test results on <i>Q<sub>2</sub></i> with <i>γ = 2</i> </h3>
<th>Number of refinements </th><th> $\|u-u_h^\circ\|_{L_2}$ </th><th> Conv. rates </th><th> $|u-u_h|_{H^1}$ </th><th> Conv. rates </th><th> $|u-u_h|_{H^2}$ </th><th> Conv. rates </th>
</tr>
<tr>
- <td> 2 </td><td> 5.482e-03 </td><td> </td><td> 7.652e-02 </td><td> </td><td> 1.756e-00 </td><td> </td>
+ <td> 2 </td><td> 4.133e-02 </td><td> </td><td> 2.517e-01 </td><td> </td><td> 3.056 </td><td> </td>
</tr>
<tr>
- <td> 3 </td><td> 2.227e-02 </td><td> 1.29 </td><td> 2.177e-02 </td><td> 1.81 </td><td> 8.711e-01 </td><td> 1.01 </td>
+ <td> 3 </td><td> 6.500e-03 </td><td>2.66 </td><td> 5.916e-02 </td><td> 2.08 </td><td>1.444 </td><td> 1.08 </td>
</tr>
<tr>
- <td> 4 </td><td> 9.088e-04 </td><td> 1.29 </td><td> 6.026e-03 </td><td> 1.85 </td><td> 4.196e-01 </td><td> 1.05 </td>
+ <td> 4 </td><td> 6.780e-04 </td><td> 3.26 </td><td> 1.203e-02 </td><td> 2.296 </td><td> 6.151e-01 </td><td> 1.231 </td>
</tr>
<tr>
- <td> 5 </td><td> 2.822e-04 </td><td> 1.68 </td><td> 1.605e-03 </td><td> 1.90 </td><td> 2.041e-01 </td><td> 1.03 </td>
+ <td> 5 </td><td> 1.622e-04 </td><td> 2.06 </td><td> 2.448e-03 </td><td> 2.297 </td><td> 2.618e-01 </td><td> 1.232 </td>
</tr>
</table>
In this case, the convergence rates more or less follow the
theoretical expectations, but, compared to the results from $\gamma =
-p(p+1)$, are more variable. That suggests that the penalty parameter
-is already too small even for the value $p=2$ chosen here, and one can
-readily check that it is indeed too small when using higher polynomial
-degrees.
+p(p+1)$, are more variable.
+Again, we could repeat this kind of experiment for $Q_3$ and $Q_4$ elements. In both cases, we will find that we
+obtain roughly the expected convergence rates. Of more interest may then be to compare the absolute
+size of the errors. While in the table above, for the $Q_2$ case, the errors on the finest grid are comparable between
+the $\gamma=p(p+1)$ and $\gamma=2$ case, for $Q_3$ the errors are substantially larger for $\gamma=2$ than for
+$\gamma=p(p+1)$. The same is true for the $Q_4$ case.
<h3> Conclusions for the choice of the penalty parameter </h3>
addition should not be overly difficult using, for example, the
FEInterfaceValues class combined with MeshWorker::mesh_loop() in the
same spirit as we used for the assembly of the linear system.
-