]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Move tool functions all in the same place.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Thu, 21 Aug 2008 15:29:50 +0000 (15:29 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Thu, 21 Aug 2008 15:29:50 +0000 (15:29 +0000)
git-svn-id: https://svn.dealii.org/trunk@16626 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-31/step-31.cc

index 9582f59b82b5a53fbaf5c26a4a7b687083ead405..12c759d12f47c04e3649d92b87f64aded5f0a973 100644 (file)
@@ -437,6 +437,249 @@ namespace EquationData
 }
 
 
+namespace LinearSolvers
+{
+
+
+
+                                  // @sect3{Linear solvers and preconditioners}
+
+                                  // This section introduces some
+                                  // objects that are used for the
+                                  // solution of the linear equations of
+                                  // Stokes system that we need to
+                                  // solve in each time step. The basic
+                                  // structure is still the same as
+                                  // in step-20, where Schur complement
+                                  // based preconditioners and solvers
+                                  // have been introduced, with the 
+                                  // actual interface taken from step-22.
+
+                                  // @sect4{The <code>InverseMatrix</code> class template}
+
+                                  // This class is an interface to
+                                  // calculate the action of an
+                                  // "inverted" matrix on a vector
+                                  // (using the <code>vmult</code>
+                                  // operation)
+                                  // in the same way as the corresponding
+                                  // function in step-22: when the
+                                  // product of an object of this class
+                                  // is requested, we solve a linear
+                                  // equation system with that matrix
+                                  // using the CG method, accelerated
+                                  // by a preconditioner of (templated) class
+                                  // <code>Preconditioner</code>.
+  template <class Matrix, class Preconditioner>
+  class InverseMatrix : public Subscriptor
+  {
+    public:
+      InverseMatrix (const Matrix         &m,
+                    const Preconditioner &preconditioner);
+
+      void vmult (Vector<double>       &dst,
+                 const Vector<double> &src) const;
+
+    private:
+      const SmartPointer<const Matrix> matrix;
+      const Preconditioner &preconditioner;
+  };
+
+
+  template <class Matrix, class Preconditioner>
+  InverseMatrix<Matrix,Preconditioner>::InverseMatrix (const Matrix &m,
+                                                      const Preconditioner &preconditioner)
+                 :
+                 matrix (&m),
+                 preconditioner (preconditioner)
+  {}
+
+
+
+  template <class Matrix, class Preconditioner>
+  void InverseMatrix<Matrix,Preconditioner>::vmult (Vector<double>       &dst,
+                                                   const Vector<double> &src) const
+  {
+    SolverControl solver_control (src.size(), 1e-6*src.l2_norm());
+    SolverCG<> cg (solver_control);
+
+    dst = 0;
+
+    try
+      {
+       cg.solve (*matrix, dst, src, preconditioner);
+      }
+    catch (std::exception &e)
+      {
+       Assert (false, ExcMessage(e.what()));
+      }
+  }
+
+                                  // @sect4{Schur complement preconditioner}
+
+                                  // This is the implementation
+                                  // of the Schur complement
+                                  // preconditioner as described
+                                  // in the section on improved
+                                  // solvers in step-22.
+                                  // 
+                                  // The basic 
+                                  // concept of the preconditioner is 
+                                  // different to the solution 
+                                  // strategy used in step-20 and 
+                                  // step-22. There, the Schur
+                                  // complement was used for a 
+                                  // two-stage solution of the linear
+                                  // system. Recall that the process
+                                  // in the Schur complement solver is
+                                  // a Gaussian elimination of
+                                  // a 2x2 block matrix, where each
+                                  // block is solved iteratively. 
+                                  // Here, the idea is to let 
+                                  // an iterative solver act on the
+                                  // whole system, and to use 
+                                  // a Schur complement for 
+                                  // preconditioning. As usual when
+                                  // dealing with preconditioners, we
+                                  // don't intend to exacly set up a 
+                                  // Schur complement, but rather use
+                                  // a good approximation to the
+                                  // Schur complement for the purpose of
+                                  // preconditioning.
+                                  // 
+                                  // So the question is how we can
+                                  // obtain a good preconditioner.
+                                  // Let's have a look at the 
+                                  // preconditioner matrix <i>P</i>
+                                  // acting on the block system, built
+                                  // as
+                                  // @f{eqnarray*}
+                                  //   P^{-1}
+                                  //   = 
+                                  //   \left(\begin{array}{cc}
+                                  //     A^{-1} & 0 \\ S^{-1} B A^{-1} & -S^{-1}
+                                  //   \end{array}\right)
+                                  // @f}
+                                  // using the Schur complement 
+                                  // $S = B A^{-1} B^T$. If we apply
+                                  // this matrix in the solution of 
+                                  // a linear system, convergence of
+                                  // an iterative Krylov-based solver
+                                  // will be governed by the matrix
+                                  // @f{eqnarray*}
+                                  //   P^{-1}\left(\begin{array}{cc}
+                                  //     A & B^T \\ B & 0
+                                  //   \end{array}\right) 
+                                  //  = 
+                                  //   \left(\begin{array}{cc}
+                                  //     I & A^{-1} B^T \\ 0 & 0
+                                  //   \end{array}\right),
+                                  // @f}
+                                  // which turns out to be very simple.
+                                  // A GMRES solver based on exact
+                                  // matrices would converge in two
+                                  // iterations, since there are
+                                  // only two distinct eigenvalues.
+                                  // Such a preconditioner for the
+                                  // blocked Stokes system has been 
+                                  // proposed by Silvester and Wathen,
+                                  // Fast iterative solution of 
+                                  // stabilised Stokes systems part II. 
+                                  // Using general block preconditioners.
+                                  // (SIAM J. Numer. Anal., 31 (1994),
+                                  // pp. 1352-1367).
+                                  // 
+                                  // The deal.II users who have already
+                                  // gone through the step-20 and step-22 
+                                  // tutorials can certainly imagine
+                                  // how we're going to implement this.
+                                  // We replace the inverse matrices
+                                  // in $P^{-1}$ using the InverseMatrix
+                                  // class, and the inverse Schur 
+                                  // complement will be approximated
+                                  // by the pressure mass matrix $M_p$.
+                                  // Having this in mind, we define a
+                                  // preconditioner class with a 
+                                  // <code>vmult</code> functionality,
+                                  // which is all we need for the
+                                  // interaction with the usual solver
+                                  // functions further below in the
+                                  // program code.
+                                  // 
+                                  // First the declarations. These
+                                  // are similar to the definition of
+                                  // the Schur complement in step-20,
+                                  // with the difference that we need
+                                  // some more preconditioners in
+                                  // the constructor.
+  template <class PreconditionerA, class PreconditionerMp>
+  class BlockSchurPreconditioner : public Subscriptor
+  {
+    public:
+      BlockSchurPreconditioner (const BlockSparseMatrix<double>         &S,
+                               const InverseMatrix<SparseMatrix<double>,PreconditionerMp>  &Mpinv,
+                               const PreconditionerA                   &Apreconditioner);
+
+      void vmult (BlockVector<double>       &dst,
+                 const BlockVector<double> &src) const;
+
+    private:
+      const SmartPointer<const BlockSparseMatrix<double> > stokes_matrix;
+      const SmartPointer<const InverseMatrix<SparseMatrix<double>,
+                                            PreconditionerMp > > m_inverse;
+const PreconditionerA &a_preconditioner;
+
+mutable Vector<double> tmp;
+
+};
+
+
+
+  template <class PreconditionerA, class PreconditionerMp>
+  BlockSchurPreconditioner<PreconditionerA, PreconditionerMp>::
+  BlockSchurPreconditioner(const BlockSparseMatrix<double>                            &S,
+                          const InverseMatrix<SparseMatrix<double>,PreconditionerMp> &Mpinv,
+                          const PreconditionerA                                      &Apreconditioner)
+                 :
+                 stokes_matrix           (&S),
+                 m_inverse               (&Mpinv),
+                 a_preconditioner        (Apreconditioner),
+                 tmp                     (S.block(1,1).m())
+  {}
+
+
+                                  // This is the <code>vmult</code>
+                                  // function. We implement
+                                  // the action of $P^{-1}$ as described
+                                  // above in three successive steps.
+                                  // The first step multiplies
+                                  // the velocity vector by a 
+                                  // preconditioner of the matrix <i>A</i>.
+                                  // The resuling velocity vector
+                                  // is then multiplied by $B$ and
+                                  // subtracted from the pressure.
+                                  // This second step only acts on 
+                                  // the pressure vector and is 
+                                  // accomplished by the command
+                                  // SparseMatrix::residual. Next, 
+                                  // we change the sign in the 
+                                  // temporary pressure vector and
+                                  // finally multiply by the pressure
+                                  // mass matrix to get the final
+                                  // pressure vector.
+  template <class PreconditionerA, class PreconditionerMp>
+  void BlockSchurPreconditioner<PreconditionerA, PreconditionerMp>::vmult (
+    BlockVector<double>       &dst,
+    const BlockVector<double> &src) const
+  {
+    a_preconditioner.vmult (dst.block(0), src.block(0));
+    stokes_matrix->block(1,0).residual(tmp, dst.block(0), src.block(1));
+    tmp *= -1;
+    m_inverse->vmult (dst.block(1), tmp);
+  }
+}
+
+
 
                                 // @sect3{The <code>BoussinesqFlowProblem</code> class template}
 
@@ -473,6 +716,20 @@ class BoussinesqFlowProblem
     void output_results () const;
     void refine_mesh (const unsigned int max_grid_level);
 
+    static void compute_viscosity(const std::vector<double>          &old_temperature,
+                                 const std::vector<double>          &old_old_temperature,
+                                 const std::vector<Tensor<1,dim> >  &old_temperature_grads,
+                                 const std::vector<Tensor<1,dim> >  &old_old_temperature_grads,
+                                 const std::vector<Tensor<2,dim> >  &old_temperature_hessians,
+                                 const std::vector<Tensor<2,dim> >  &old_old_temperature_hessians,
+                                 const std::vector<Vector<double> > &present_stokes_values,
+                                 const std::vector<double>          &gamma_values,
+                                 const double                        global_u_infty,
+                                 const double                        global_T_variation,
+                                 const double                        global_Omega_diameter,
+                                 const double                        cell_diameter,
+                                 const double                        old_time_step);
+
     Triangulation<dim>        triangulation;
 
     const unsigned int        stokes_degree;
@@ -509,8 +766,8 @@ class BoussinesqFlowProblem
     double old_time_step;
     unsigned int timestep_number;
 
-    boost::shared_ptr<PreconditionerTrilinosAmg>  Amg_preconditioner;
-    boost::shared_ptr<SparseILU<double> > Mp_preconditioner;
+    boost::shared_ptr<LinearSolversPreconditionerTrilinosAmg>  Amg_preconditioner;
+    boost::shared_ptr<SparseILU<double> >                      Mp_preconditioner;
 
     bool rebuild_stokes_matrix;
     bool rebuild_temperature_matrices;
@@ -518,247 +775,6 @@ class BoussinesqFlowProblem
 };
 
 
-
-
-
-                                // @sect3{Linear solvers and preconditioners}
-
-                                // This section introduces some
-                                // objects that are used for the
-                                // solution of the linear equations of
-                                // Stokes system that we need to
-                                // solve in each time step. The basic
-                                // structure is still the same as
-                                // in step-20, where Schur complement
-                                // based preconditioners and solvers
-                                // have been introduced, with the 
-                                // actual interface taken from step-22.
-
-                                // @sect4{The <code>InverseMatrix</code> class template}
-
-                                // This class is an interface to
-                                // calculate the action of an
-                                // "inverted" matrix on a vector
-                                // (using the <code>vmult</code>
-                                // operation)
-                                // in the same way as the corresponding
-                                // function in step-22: when the
-                                // product of an object of this class
-                                // is requested, we solve a linear
-                                // equation system with that matrix
-                                // using the CG method, accelerated
-                                // by a preconditioner of (templated) class
-                                // <code>Preconditioner</code>.
-template <class Matrix, class Preconditioner>
-class InverseMatrix : public Subscriptor
-{
-  public:
-    InverseMatrix (const Matrix         &m,
-                  const Preconditioner &preconditioner);
-
-    void vmult (Vector<double>       &dst,
-                const Vector<double> &src) const;
-
-  private:
-    const SmartPointer<const Matrix> matrix;
-    const Preconditioner &preconditioner;
-};
-
-
-template <class Matrix, class Preconditioner>
-InverseMatrix<Matrix,Preconditioner>::InverseMatrix (const Matrix &m,
-                                                    const Preconditioner &preconditioner)
-                :
-                matrix (&m),
-               preconditioner (preconditioner)
-{}
-
-
-
-template <class Matrix, class Preconditioner>
-void InverseMatrix<Matrix,Preconditioner>::vmult (Vector<double>       &dst,
-                                                 const Vector<double> &src) const
-{
-  SolverControl solver_control (src.size(), 1e-6*src.l2_norm());
-  SolverCG<> cg (solver_control);
-
-  dst = 0;
-
-  try
-    {
-      cg.solve (*matrix, dst, src, preconditioner);
-    }
-  catch (std::exception &e)
-    {
-      Assert (false, ExcMessage(e.what()));
-    }
-}
-
-                                // @sect4{Schur complement preconditioner}
-
-                                // This is the implementation
-                                // of the Schur complement
-                                // preconditioner as described
-                                // in the section on improved
-                                // solvers in step-22.
-                                // 
-                                // The basic 
-                                // concept of the preconditioner is 
-                                // different to the solution 
-                                // strategy used in step-20 and 
-                                // step-22. There, the Schur
-                                // complement was used for a 
-                                // two-stage solution of the linear
-                                // system. Recall that the process
-                                // in the Schur complement solver is
-                                // a Gaussian elimination of
-                                // a 2x2 block matrix, where each
-                                // block is solved iteratively. 
-                                // Here, the idea is to let 
-                                // an iterative solver act on the
-                                // whole system, and to use 
-                                // a Schur complement for 
-                                // preconditioning. As usual when
-                                // dealing with preconditioners, we
-                                // don't intend to exacly set up a 
-                                // Schur complement, but rather use
-                                // a good approximation to the
-                                // Schur complement for the purpose of
-                                // preconditioning.
-                                // 
-                                // So the question is how we can
-                                // obtain a good preconditioner.
-                                // Let's have a look at the 
-                                // preconditioner matrix <i>P</i>
-                                // acting on the block system, built
-                                // as
-                                // @f{eqnarray*}
-                                //   P^{-1}
-                                //   = 
-                                //   \left(\begin{array}{cc}
-                                //     A^{-1} & 0 \\ S^{-1} B A^{-1} & -S^{-1}
-                                //   \end{array}\right)
-                                // @f}
-                                // using the Schur complement 
-                                // $S = B A^{-1} B^T$. If we apply
-                                // this matrix in the solution of 
-                                // a linear system, convergence of
-                                // an iterative Krylov-based solver
-                                // will be governed by the matrix
-                                // @f{eqnarray*}
-                                //   P^{-1}\left(\begin{array}{cc}
-                                //     A & B^T \\ B & 0
-                                //   \end{array}\right) 
-                                //  = 
-                                //   \left(\begin{array}{cc}
-                                //     I & A^{-1} B^T \\ 0 & 0
-                                //   \end{array}\right),
-                                // @f}
-                                // which turns out to be very simple.
-                                // A GMRES solver based on exact
-                                // matrices would converge in two
-                                // iterations, since there are
-                                // only two distinct eigenvalues.
-                                // Such a preconditioner for the
-                                // blocked Stokes system has been 
-                                // proposed by Silvester and Wathen,
-                                // Fast iterative solution of 
-                                // stabilised Stokes systems part II. 
-                                // Using general block preconditioners.
-                                // (SIAM J. Numer. Anal., 31 (1994),
-                                // pp. 1352-1367).
-                                // 
-                                // The deal.II users who have already
-                                // gone through the step-20 and step-22 
-                                // tutorials can certainly imagine
-                                // how we're going to implement this.
-                                // We replace the inverse matrices
-                                // in $P^{-1}$ using the InverseMatrix
-                                // class, and the inverse Schur 
-                                // complement will be approximated
-                                // by the pressure mass matrix $M_p$.
-                                // Having this in mind, we define a
-                                // preconditioner class with a 
-                                // <code>vmult</code> functionality,
-                                // which is all we need for the
-                                // interaction with the usual solver
-                                // functions further below in the
-                                // program code.
-                                // 
-                                // First the declarations. These
-                                // are similar to the definition of
-                                // the Schur complement in step-20,
-                                // with the difference that we need
-                                // some more preconditioners in
-                                // the constructor.
-template <class PreconditionerA, class PreconditionerMp>
-class BlockSchurPreconditioner : public Subscriptor
-{
-  public:
-    BlockSchurPreconditioner (const BlockSparseMatrix<double>         &S,
-          const InverseMatrix<SparseMatrix<double>,PreconditionerMp>  &Mpinv,
-          const PreconditionerA &Apreconditioner);
-
-  void vmult (BlockVector<double>       &dst,
-              const BlockVector<double> &src) const;
-
-  private:
-    const SmartPointer<const BlockSparseMatrix<double> > stokes_matrix;
-    const SmartPointer<const InverseMatrix<SparseMatrix<double>,
-                       PreconditionerMp > > m_inverse;
-    const PreconditionerA &a_preconditioner;
-
-    mutable Vector<double> tmp;
-
-};
-
-template <class PreconditionerA, class PreconditionerMp>
-BlockSchurPreconditioner<PreconditionerA, PreconditionerMp>::BlockSchurPreconditioner(
-          const BlockSparseMatrix<double>                            &S,
-          const InverseMatrix<SparseMatrix<double>,PreconditionerMp> &Mpinv,
-          const PreconditionerA &Apreconditioner
-          )
-                :
-                stokes_matrix           (&S),
-                m_inverse               (&Mpinv),
-                a_preconditioner        (Apreconditioner),
-                tmp                     (S.block(1,1).m())
-{
-}
-
-
-                                // This is the <code>vmult</code>
-                                // function. We implement
-                                // the action of $P^{-1}$ as described
-                                // above in three successive steps.
-                                // The first step multiplies
-                                // the velocity vector by a 
-                                // preconditioner of the matrix <i>A</i>.
-                                // The resuling velocity vector
-                                // is then multiplied by $B$ and
-                                // subtracted from the pressure.
-                                // This second step only acts on 
-                                // the pressure vector and is 
-                                // accomplished by the command
-                                // SparseMatrix::residual. Next, 
-                                // we change the sign in the 
-                                // temporary pressure vector and
-                                // finally multiply by the pressure
-                                // mass matrix to get the final
-                                // pressure vector.
-template <class PreconditionerA, class PreconditionerMp>
-void BlockSchurPreconditioner<PreconditionerA, PreconditionerMp>::vmult (
-                                     BlockVector<double>       &dst,
-                                     const BlockVector<double> &src) const
-{
-  a_preconditioner.vmult (dst.block(0), src.block(0));
-  stokes_matrix->block(1,0).residual(tmp, dst.block(0), src.block(1));
-  tmp *= -1;
-  m_inverse->vmult (dst.block(1), tmp);
-}
-
-
-
                                 // @sect3{BoussinesqFlowProblem class implementation}
 
                                 // @sect4{BoussinesqFlowProblem::BoussinesqFlowProblem}
@@ -799,6 +815,151 @@ BoussinesqFlowProblem<dim>::BoussinesqFlowProblem (const unsigned int degree)
 
 
 
+                                // @sect4{BoussinesqFlowProblem::get_maximal_velocity}
+template <int dim>
+double BoussinesqFlowProblem<dim>::get_maximal_velocity () const
+{
+  const QGauss<dim>  quadrature_formula(stokes_degree+2);
+  const unsigned int n_q_points = quadrature_formula.size();
+
+  FEValues<dim> fe_values (stokes_fe, quadrature_formula, update_values);
+  std::vector<Vector<double> > stokes_values(n_q_points,
+                                            Vector<double>(dim+1));
+  double max_velocity = 0;
+
+  typename DoFHandler<dim>::active_cell_iterator
+    cell = stokes_dof_handler.begin_active(),
+    endc = stokes_dof_handler.end();
+  for (; cell!=endc; ++cell)
+    {
+      fe_values.reinit (cell);
+      fe_values.get_function_values (stokes_solution, stokes_values);
+
+      for (unsigned int q=0; q<n_q_points; ++q)
+        {
+          Tensor<1,dim> velocity;
+          for (unsigned int i=0; i<dim; ++i)
+            velocity[i] = stokes_values[q](i);
+
+          max_velocity = std::max (max_velocity, velocity.norm());
+        }
+    }
+
+  return max_velocity;
+}
+
+
+
+
+                                // @sect4{BoussinesqFlowProblem::get_extrapolated_temperature_range}
+template <int dim>
+std::pair<double,double>
+BoussinesqFlowProblem<dim>::get_extrapolated_temperature_range () const
+{
+  QGauss<dim>   quadrature_formula(temperature_degree+2);
+  const unsigned int   n_q_points = quadrature_formula.size();
+
+  FEValues<dim> fe_values (temperature_fe, quadrature_formula,
+                           update_values);
+  std::vector<double> old_temperature_values(n_q_points);
+  std::vector<double> old_old_temperature_values(n_q_points);
+  
+  double min_temperature = (1. + time_step/old_time_step) *
+                          old_temperature_solution.linfty_norm()
+                          +
+                          time_step/old_time_step *
+                          old_old_temperature_solution.linfty_norm(),
+        max_temperature = -min_temperature;
+
+  typename DoFHandler<dim>::active_cell_iterator
+    cell = temperature_dof_handler.begin_active(),
+    endc = temperature_dof_handler.end();
+  for (; cell!=endc; ++cell)
+    {
+      fe_values.reinit (cell);
+      fe_values.get_function_values (old_temperature_solution, old_temperature_values);
+      fe_values.get_function_values (old_old_temperature_solution, old_old_temperature_values);
+
+      for (unsigned int q=0; q<n_q_points; ++q)
+        {
+          const double temperature = 
+           (1. + time_step/old_time_step) * old_temperature_values[q]-
+           time_step/old_time_step * old_old_temperature_values[q];
+
+          min_temperature = std::min (min_temperature, temperature);
+         max_temperature = std::max (max_temperature, temperature);
+        }
+    }
+
+  return std::make_pair(min_temperature, max_temperature);
+}
+
+
+
+template <int dim>
+double
+BoussinesqFlowProblem<dim>::
+compute_viscosity(const std::vector<double>          &old_temperature,
+                 const std::vector<double>          &old_old_temperature,
+                 const std::vector<Tensor<1,dim> >  &old_temperature_grads,
+                 const std::vector<Tensor<1,dim> >  &old_old_temperature_grads,
+                 const std::vector<Tensor<2,dim> >  &old_temperature_hessians,
+                 const std::vector<Tensor<2,dim> >  &old_old_temperature_hessians,
+                 const std::vector<Vector<double> > &present_stokes_values,
+                 const std::vector<double>          &gamma_values,
+                 const double                        global_u_infty,
+                 const double                        global_T_variation,
+                 const double                        global_Omega_diameter,
+                 const double                        cell_diameter,
+                 const double                        old_time_step)
+{
+  const double beta = 0.03;
+  const double alpha = 1;
+  
+  if (global_u_infty == 0)
+    return 5e-3 * cell_diameter;
+  
+  const unsigned int n_q_points = old_temperature.size();
+  
+                                  // Stage 1: calculate residual
+  double max_residual = 0;
+  double max_velocity = 0;
+  
+  for (unsigned int q=0; q < n_q_points; ++q)
+    {
+      Tensor<1,dim> u;
+      for (unsigned int d=0; d<dim; ++d)
+       u[d] = present_stokes_values[q](d);
+      
+      const double dT_dt = (old_temperature[q] - old_old_temperature[q])
+                          / old_time_step;
+      const double u_grad_T = u * (old_temperature_grads[q] +
+                                  old_old_temperature_grads[q]) / 2;
+      
+      const double kappa_Delta_T = EquationData::kappa
+                                  * (trace(old_temperature_hessians[q]) +
+                                     trace(old_old_temperature_hessians[q])) / 2;
+
+      const double residual
+       = std::abs((dT_dt + u_grad_T - kappa_Delta_T - gamma_values[q]) *
+                  std::pow((old_temperature[q]+old_old_temperature[q]) / 2,
+                           alpha-1.));
+
+      max_residual = std::max (residual,        max_residual);
+      max_velocity = std::max (std::sqrt (u*u), max_velocity);
+    }
+  
+  const double global_scaling = global_u_infty * global_T_variation /
+                               std::pow(global_Omega_diameter, alpha - 2.);
+
+  return (beta *
+         max_velocity *
+         std::min (cell_diameter,
+                   std::pow(cell_diameter,alpha) * max_residual / global_scaling));
+}
+
+
+
                                 // @sect4{BoussinesqFlowProblem::setup_dofs}
                                 // 
                                 // This function does the same as
@@ -1269,9 +1430,8 @@ BoussinesqFlowProblem<dim>::build_stokes_preconditioner ()
                                   // copied over to Trilinos. we need to
                                   // keep the (1,1) block, though
       
-  Mp_preconditioner
-    = boost::shared_ptr<SparseILU<double> >
-    (new SparseILU<double>);
+  Mp_preconditioner = boost::shared_ptr<SparseILU<double> >
+                     (new SparseILU<double>);
   Mp_preconditioner->initialize (stokes_preconditioner_matrix.block(1,1),
                                 SparseILU<double>::AdditionalData());
       
@@ -1592,68 +1752,6 @@ void BoussinesqFlowProblem<dim>::assemble_stokes_system ()
 
 
 
-template <int dim>
-double compute_viscosity(
-  const std::vector<double>          &old_temperature,
-  const std::vector<double>          &old_old_temperature,
-  const std::vector<Tensor<1,dim> >  &old_temperature_grads,
-  const std::vector<Tensor<1,dim> >  &old_old_temperature_grads,
-  const std::vector<Tensor<2,dim> >  &old_temperature_hessians,
-  const std::vector<Tensor<2,dim> >  &old_old_temperature_hessians,
-  const std::vector<Vector<double> > &present_stokes_values,
-  const std::vector<double>          &gamma_values,
-  const double                        global_u_infty,
-  const double                        global_T_variation,
-  const double                        global_Omega_diameter,
-  const double                        cell_diameter,
-  const double                        old_time_step
-)
-{
-  const double beta = 0.03;
-  const double alpha = 1;
-  
-  if (global_u_infty == 0)
-    return 5e-3 * cell_diameter;
-  
-  const unsigned int n_q_points = old_temperature.size();
-  
-                                  // Stage 1: calculate residual
-  double max_residual = 0;
-  double max_velocity = 0;
-  
-  for (unsigned int q=0; q < n_q_points; ++q)
-    {
-      Tensor<1,dim> u;
-      for (unsigned int d=0; d<dim; ++d)
-       u[d] = present_stokes_values[q](d);
-      
-      const double dT_dt = (old_temperature[q] - old_old_temperature[q])
-                          / old_time_step;
-      const double u_grad_T = u * (old_temperature_grads[q] +
-                                  old_old_temperature_grads[q]) / 2;
-      
-      const double kappa_Delta_T = EquationData::kappa
-                                  * (trace(old_temperature_hessians[q]) +
-                                     trace(old_old_temperature_hessians[q])) / 2;
-
-      const double residual
-       = std::abs((dT_dt + u_grad_T - kappa_Delta_T - gamma_values[q]) *
-                  std::pow((old_temperature[q]+old_old_temperature[q]) / 2,
-                           alpha-1.));
-
-      max_residual = std::max (residual,        max_residual);
-      max_velocity = std::max (std::sqrt (u*u), max_velocity);
-    }
-  
-  const double global_scaling = global_u_infty * global_T_variation /
-                               std::pow(global_Omega_diameter, alpha - 2.);
-
-  return (beta *
-         max_velocity *
-         std::min (cell_diameter,
-                   std::pow(cell_diameter,alpha) * max_residual / global_scaling));
-}
-
 
 
                                 // @sect4{BoussinesqFlowProblem::assemble_temperature_system}
@@ -1856,28 +1954,27 @@ void BoussinesqFlowProblem<dim>::assemble_temperature_system ()
       temperature_fe_values.reinit (cell);
       stokes_fe_values.reinit (stokes_cell);
 
-      temperature_fe_values.get_function_values (old_temperature_solution, old_temperature_values);
-      temperature_fe_values.get_function_values (old_old_temperature_solution, old_old_temperature_values);
+      temperature_fe_values.get_function_values (old_temperature_solution,
+                                                old_temperature_values);
+      temperature_fe_values.get_function_values (old_old_temperature_solution,
+                                                old_old_temperature_values);
 
-      temperature_fe_values.get_function_gradients (old_temperature_solution, old_temperature_grads);
-      temperature_fe_values.get_function_gradients (old_old_temperature_solution, old_old_temperature_grads);
+      temperature_fe_values.get_function_gradients (old_temperature_solution,
+                                                   old_temperature_grads);
+      temperature_fe_values.get_function_gradients (old_old_temperature_solution,
+                                                   old_old_temperature_grads);
       
-      temperature_fe_values.get_function_hessians (old_temperature_solution, old_temperature_hessians);
-      temperature_fe_values.get_function_hessians (old_old_temperature_solution, old_old_temperature_hessians);
+      temperature_fe_values.get_function_hessians (old_temperature_solution,
+                                                  old_temperature_hessians);
+      temperature_fe_values.get_function_hessians (old_old_temperature_solution,
+                                                  old_old_temperature_hessians);
       
       temperature_right_hand_side.value_list (temperature_fe_values.get_quadrature_points(),
                                              gamma_values);
 
-      stokes_fe_values.get_function_values (stokes_solution, present_stokes_values);
+      stokes_fe_values.get_function_values (stokes_solution,
+                                           present_stokes_values);
       
-                                      // build matrix contributions
-
-                                      // define diffusion. take the
-                                      // maximum of what we really
-                                      // want and the minimal amount
-                                      // of diffusion (determined
-                                      // impirically) to keep the
-                                      // scheme stable
       const double nu
        = compute_viscosity (old_temperature_values,
                             old_old_temperature_values,
@@ -2193,87 +2290,6 @@ void BoussinesqFlowProblem<dim>::refine_mesh (const unsigned int max_grid_level)
 
 
 
-                                // @sect4{BoussinesqFlowProblem::get_maximal_velocity}
-template <int dim>
-double BoussinesqFlowProblem<dim>::get_maximal_velocity () const
-{
-  const QGauss<dim>  quadrature_formula(stokes_degree+2);
-  const unsigned int n_q_points = quadrature_formula.size();
-
-  FEValues<dim> fe_values (stokes_fe, quadrature_formula, update_values);
-  std::vector<Vector<double> > stokes_values(n_q_points,
-                                            Vector<double>(dim+1));
-  double max_velocity = 0;
-
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = stokes_dof_handler.begin_active(),
-    endc = stokes_dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-      fe_values.reinit (cell);
-      fe_values.get_function_values (stokes_solution, stokes_values);
-
-      for (unsigned int q=0; q<n_q_points; ++q)
-        {
-          Tensor<1,dim> velocity;
-          for (unsigned int i=0; i<dim; ++i)
-            velocity[i] = stokes_values[q](i);
-
-          max_velocity = std::max (max_velocity, velocity.norm());
-        }
-    }
-
-  return max_velocity;
-}
-
-
-
-
-                                // @sect4{BoussinesqFlowProblem::get_extrapolated_temperature_range}
-template <int dim>
-std::pair<double,double>
-BoussinesqFlowProblem<dim>::get_extrapolated_temperature_range () const
-{
-  QGauss<dim>   quadrature_formula(temperature_degree+2);
-  const unsigned int   n_q_points = quadrature_formula.size();
-
-  FEValues<dim> fe_values (temperature_fe, quadrature_formula,
-                           update_values);
-  std::vector<double> old_temperature_values(n_q_points);
-  std::vector<double> old_old_temperature_values(n_q_points);
-  
-  double min_temperature = (1. + time_step/old_time_step) *
-                          old_temperature_solution.linfty_norm()
-                          +
-                          time_step/old_time_step *
-                          old_old_temperature_solution.linfty_norm(),
-        max_temperature = -min_temperature;
-
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = temperature_dof_handler.begin_active(),
-    endc = temperature_dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-      fe_values.reinit (cell);
-      fe_values.get_function_values (old_temperature_solution, old_temperature_values);
-      fe_values.get_function_values (old_old_temperature_solution, old_old_temperature_values);
-
-      for (unsigned int q=0; q<n_q_points; ++q)
-        {
-          const double temperature = 
-           (1. + time_step/old_time_step) * old_temperature_values[q]-
-           time_step/old_time_step * old_old_temperature_values[q];
-
-          min_temperature = std::min (min_temperature, temperature);
-         max_temperature = std::max (max_temperature, temperature);
-        }
-    }
-
-  return std::make_pair(min_temperature, max_temperature);
-}
-
-
-
                                 // @sect4{BoussinesqFlowProblem::run}
 template <int dim>
 void BoussinesqFlowProblem<dim>::run ()

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.