]> https://gitweb.dealii.org/ - dealii.git/commitdiff
QGaussN removed
authorGuido Kanschat <dr.guido.kanschat@gmail.com>
Sat, 18 Dec 2004 16:54:12 +0000 (16:54 +0000)
committerGuido Kanschat <dr.guido.kanschat@gmail.com>
Sat, 18 Dec 2004 16:54:12 +0000 (16:54 +0000)
git-svn-id: https://svn.dealii.org/trunk@9819 0785d39b-7218-0410-832d-ea1e28bc413d

15 files changed:
deal.II/examples/step-10/step-10.cc
deal.II/examples/step-11/step-11.cc
deal.II/examples/step-12/step-12.cc
deal.II/examples/step-13/step-13.cc
deal.II/examples/step-14/step-14.cc
deal.II/examples/step-15/step-15.cc
deal.II/examples/step-16/step-16.cc
deal.II/examples/step-17/step-17.cc
deal.II/examples/step-3/step-3.cc
deal.II/examples/step-4/step-4.cc
deal.II/examples/step-5/step-5.cc
deal.II/examples/step-6/step-6.cc
deal.II/examples/step-7/step-7.cc
deal.II/examples/step-8/step-8.cc
deal.II/examples/step-9/step-9.cc

index 4bc0bf1e4d041b6c2a2a1cfc30d6988e2e36f0c2..0b02fc6c84b07efc04fc9b785268b92cea4932ab 100644 (file)
@@ -4,7 +4,7 @@
 /*    $Id$       */
 /*    Version: $Name$                                          */
 /*                                                                */
-/*    Copyright (C) 2001, 2002, 2003 by the deal.II authors */
+/*    Copyright (C) 2001, 2002, 2003, 2004 by the deal.II authors */
 /*                                                                */
 /*    This file is subject to QPL and may not be  distributed     */
 /*    without copyright and license information. Please refer     */
@@ -310,8 +310,8 @@ void compute_pi_by_area ()
                                   // For the numerical quadrature on
                                   // all cells we employ a quadrature
                                   // rule of sufficiently high
-                                  // degree. We choose QGauss4 that
-                                  // is of order 8, to be sure that
+                                  // degree. We choose QGauss that
+                                  // is of order 8 (4 points), to be sure that
                                   // the errors due to numerical
                                   // quadrature are of higher order
                                   // than the order (maximal 6) that
@@ -329,7 +329,7 @@ void compute_pi_by_area ()
                                   // computations, but could as well
                                   // have used any quadrature formula
                                   // of like order instead.
-  const QGauss4<dim> quadrature;
+  const QGauss<dim> quadrature(4);
 
                                   // Now start by looping over
                                   // polynomial mapping degrees=1..4:
@@ -550,7 +550,7 @@ void compute_pi_by_perimeter ()
                                   // as we will integrate over
                                   // (boundary) lines rather than
                                   // over cells.
-  const QGauss4<dim-1> quadrature;
+  const QGauss<dim-1> quadrature(4);
 
                                   // We loop over all degrees, create
                                   // the Triangulation, the Boundary,
index 308228b075dad6000d887edcdfa2db59faa13697..02f1388810a4dfae31ab8fefbbd501136add14da 100644 (file)
@@ -4,7 +4,7 @@
 /*    $Id$       */
 /*    Version: $Name$                                          */
 /*                                                                */
-/*    Copyright (C) 2001, 2002, 2003 by the deal.II authors */
+/*    Copyright (C) 2001, 2002, 2003, 2004 by the deal.II authors */
 /*                                                                */
 /*    This file is subject to QPL and may not be  distributed     */
 /*    without copyright and license information. Please refer     */
@@ -450,22 +450,6 @@ void LaplaceProblem<dim>::assemble_and_solve ()
                                   // formula above computing
                                   // ``gauss_degree''.
                                   //
-                                  // Note also, that we have used a
-                                  // class called ``QGauss''. By now,
-                                  // we have only used ``QGauss4'',
-                                  // or the like, which implement a
-                                  // Gauss quadrature rule of fixed
-                                  // order. The ``QGauss'' class is
-                                  // more general, taking a parameter
-                                  // which indicates of which degree
-                                  // it shall be; for small degrees,
-                                  // the object then parallels
-                                  // objects of type ``QGaussR'' with
-                                  // fixed R, but it also provides
-                                  // quadrature rules of higher
-                                  // degree which are no longer
-                                  // hard-coded in the library.
-
                                   // Since the generation of the body
                                   // force contributions to the right
                                   // hand side vector was so simple,
index 425c02cdc1998b19b2df670a125df07a8c6ae976..2db49857ea5cb31b965e07e050ce44bb599550f1 100644 (file)
@@ -589,8 +589,8 @@ class DGMethod
                                     // formulae for the cell and the
                                     // face terms of the
                                     // discretization.
-    const QGauss4<dim>   quadrature;
-    const QGauss4<dim-1> face_quadrature;
+    const QGauss<dim>   quadrature;
+    const QGauss<dim-1> face_quadrature;
     
                                     // And there are two solution
                                     // vectors, that store the
@@ -620,8 +620,8 @@ DGMethod<dim>::DGMethod ()
                                                 // different degrees.
                 fe (1),
                dof_handler (triangulation),
-               quadrature (),
-               face_quadrature (),
+               quadrature (4),
+               face_quadrature (4),
                dg ()
 {}
 
index 3ad079e20087615424730f77271917de0e6ce3d3..1a8fdf269702779f37a88f19faff21a0e0c2b6be 100644 (file)
@@ -1766,7 +1766,7 @@ namespace LaplaceSolver
   {
     Vector<float> estimated_error_per_cell (this->triangulation->n_active_cells());
     KellyErrorEstimator<dim>::estimate (this->dof_handler,
-                                       QGauss3<dim-1>(),
+                                       QGauss<dim-1>(3),
                                        typename FunctionMap<dim>::type(),
                                        this->solution,
                                        estimated_error_per_cell);
@@ -2005,7 +2005,7 @@ void solve_problem (const std::string &solver_name)
   GridGenerator::hyper_cube (triangulation, -1, 1);
   triangulation.refine_global (2);
   const FE_Q<dim>          fe(1);
-  const QGauss4<dim>       quadrature;
+  const QGauss<dim>       quadrature(4);
   const RightHandSide<dim> rhs_function;
   const Solution<dim>      boundary_values;
 
index c06942c9d60fe9a19d1c37a8776bc3c566267f75..8849e9350185e5ebe0abfdf9aef2018e6e45136e 100644 (file)
@@ -1078,7 +1078,7 @@ namespace LaplaceSolver
   {
     Vector<float> estimated_error_per_cell (this->triangulation->n_active_cells());
     KellyErrorEstimator<dim>::estimate (this->dof_handler,
-                                       QGauss3<dim-1>(),
+                                       QGauss<dim-1>(3),
                                        typename FunctionMap<dim>::type(),
                                        this->solution,
                                        estimated_error_per_cell);
@@ -2051,7 +2051,7 @@ namespace DualFunctional
                                     // formula, have abbreviations
                                     // for the number of quadrature
                                     // points and shape functions...
-    QGauss4<dim> quadrature;
+    QGauss<dim> quadrature(4);
     FEValues<dim>  fe_values (dof_handler.get_fe(), quadrature,
                              update_gradients |
                              update_q_points  |
index 74dc3d7aca2cb28c1783ff06fca58c79ea42b97f..85a2ecbc05960c9c4fadba7bb418f9a750e750ab 100644 (file)
@@ -411,7 +411,7 @@ void MinimizationProblem<dim>::assemble_step ()
                                    // is a polynomial of sixth order. Thus,
                                    // the appropriate quadrature formula is
                                    // the one we have chosen here.
-  QGauss4<dim>  quadrature_formula;
+  QGauss<dim>  quadrature_formula(4);
   FEValues<dim> fe_values (fe, quadrature_formula, 
                           UpdateFlags(update_values    |
                                       update_gradients |
@@ -1265,7 +1265,7 @@ MinimizationProblem<dim>::energy (const DoFHandler<dim> &dof_handler,
                                    // that the integrand is a polynomial of
                                    // degree six, so a 4-point Gauss formula
                                    // is appropriate:
-  QGauss4<dim>  quadrature_formula;
+  QGauss<dim>  quadrature_formula(4);
   FEValues<dim> fe_values (dof_handler.get_fe(), quadrature_formula, 
                           UpdateFlags(update_values    |
                                       update_gradients |
index c701b3c89090fab2e4eca352305a2adbd503a06b..fdfbde66b0e26ee978bbb3af74088f6cc5e1e9d0 100644 (file)
@@ -194,7 +194,7 @@ void LaplaceProblem<dim>::setup_system ()
 template <int dim>
 void LaplaceProblem<dim>::assemble_system () 
 {  
-  QGauss2<dim>  quadrature_formula;
+  QGauss<dim>  quadrature_formula(2);
 
   FEValues<dim> fe_values (fe, quadrature_formula, 
                           UpdateFlags(update_values    |
@@ -301,7 +301,7 @@ void LaplaceProblem<dim>::assemble_system ()
 template <int dim>
 void LaplaceProblem<dim>::assemble_multigrid () 
 {  
-  QGauss2<dim>  quadrature_formula;
+  QGauss<dim>  quadrature_formula(2);
 
   FEValues<dim> fe_values (fe, quadrature_formula, 
                           UpdateFlags(update_values |
index 4043f2e8eb4d3bc686f8d4465636c8a99ad48478..b46231fd77c478f37b25205d37cafb0dcf1a2d33 100644 (file)
@@ -593,7 +593,7 @@ void ElasticProblem<dim>::assemble_system ()
                                    // from step-8. Note that we still use the
                                    // deal.II full matrix and vector types for
                                    // the local systems.
-  QGauss2<dim>  quadrature_formula;
+  QGauss<dim>  quadrature_formula(2);
   FEValues<dim> fe_values (fe, quadrature_formula, 
                           UpdateFlags(update_values    |
                                       update_gradients |
@@ -1157,7 +1157,7 @@ void ElasticProblem<dim>::refine_grid ()
                                    // (i.e. the one indicating the subdomain):
   Vector<float> local_error_per_cell (triangulation.n_active_cells());
   KellyErrorEstimator<dim>::estimate (dof_handler,
-                                      QGauss2<dim-1>(),
+                                      QGauss<dim-1>(2),
                                       typename FunctionMap<dim>::type(),
                                       localized_solution,
                                       local_error_per_cell,
index fe9469c87ea58624ff95336074f6544f2b304f7b..aa83fc01dd995d2b81eff8a3ba6ae890df15c136 100644 (file)
@@ -344,7 +344,7 @@ void LaplaceProblem::assemble_system ()
                                   // the matrix entries are quadratic
                                   // (in 1D), this is sufficient. The
                                   // same holds for 2D.
-  QGauss2<2>  quadrature_formula;
+  QGauss<2>  quadrature_formula(2);
                                   // And we initialize the object
                                   // which we have briefly talked
                                   // about above. It needs to be told
index 5e0b2059d0cb41fa33f52e39cffa13e1bbe109ae..9e1be30a087c68ac4c944335e72c01bd3dd0a0fc 100644 (file)
@@ -339,7 +339,7 @@ void LaplaceProblem<dim>::make_grid_and_dofs ()
 template <int dim>
 void LaplaceProblem<dim>::assemble_system () 
 {  
-  QGauss2<dim>  quadrature_formula;
+  QGauss<dim>  quadrature_formula(2);
 
                                   // We wanted to have a non-constant
                                   // right hand side, so we use an
index de73e2a711539cdcf58b88b366970878c84bbd25..93d2697133c48032f25b33f12e731fa5651a789c 100644 (file)
@@ -398,7 +398,7 @@ void LaplaceProblem<dim>::assemble_system ()
                                   // object will be used for this:
   const Coefficient<dim> coefficient;
 
-  QGauss2<dim>  quadrature_formula;
+  QGauss<dim>  quadrature_formula(2);
 
   FEValues<dim> fe_values (fe, quadrature_formula, 
                           UpdateFlags(update_values    |
index 9d10f5b0fb360ba8c9f2b88910583ca96e96fa8a..dda25221d7e876ee04575762cc0ed555c4b40be6 100644 (file)
@@ -453,7 +453,7 @@ void LaplaceProblem<dim>::assemble_system ()
                                   // we use consist, a Gauss formula
                                   // with three points in each
                                   // direction is sufficient.
-  QGauss3<dim>  quadrature_formula;
+  QGauss<dim>  quadrature_formula(3);
 
                                   // The ``FEValues'' object
                                   // automatically adjusts the
@@ -735,7 +735,7 @@ void LaplaceProblem<dim>::refine_grid ()
                                   // integrates polynomials up to
                                   // order 5 exactly.)
   KellyErrorEstimator<dim>::estimate (dof_handler,
-                                     QGauss3<dim-1>(),
+                                     QGauss<dim-1>(3),
                                      neumann_boundary,
                                      solution,
                                      estimated_error_per_cell);
index 00620db9c25c757406525276d986c01485cf221e..01f571c7b60a418dceaa4f9a3de93a6ff27db4fd 100644 (file)
@@ -767,8 +767,8 @@ void LaplaceProblem<dim>::assemble_system ()
                                   // a quadrature rule for the faces:
                                   // it is simply a quadrature rule
                                   // for one dimension less!
-  QGauss3<dim>   quadrature_formula;
-  QGauss3<dim-1> face_quadrature_formula;
+  QGauss<dim>   quadrature_formula(3);
+  QGauss<dim-1> face_quadrature_formula(3);
                                   // For simpler use later on, we
                                   // alias the number of quadrature
                                   // points to local variables:
@@ -1114,7 +1114,7 @@ void LaplaceProblem<dim>::refine_grid ()
 
        typename FunctionMap<dim>::type neumann_boundary;
        KellyErrorEstimator<dim>::estimate (dof_handler,
-                                           QGauss3<dim-1>(),
+                                           QGauss<dim-1>(3),
                                            neumann_boundary,
                                            solution,
                                            estimated_error_per_cell);
@@ -1179,7 +1179,7 @@ void LaplaceProblem<dim>::process_solution (const unsigned int cycle)
                                     solution,
                                     Solution<dim>(),
                                     difference_per_cell,
-                                    QGauss3<dim>(),
+                                    QGauss<dim>(3),
                                     VectorTools::L2_norm);
                                   // Finally, we want to get the
                                   // global L2 norm. This can of
@@ -1198,7 +1198,7 @@ void LaplaceProblem<dim>::process_solution (const unsigned int cycle)
                                     solution,
                                     Solution<dim>(),
                                     difference_per_cell,
-                                    QGauss3<dim>(),
+                                    QGauss<dim>(3),
                                     VectorTools::H1_seminorm);
   const double H1_error = difference_per_cell.l2_norm();
 
index 78b955bf5bb9ee2f222ccf0f51eb7d0e491d6f8f..3ae01d2ef1e90dd0d5a611afb4bfa4f732d2e577 100644 (file)
@@ -434,7 +434,7 @@ void ElasticProblem<dim>::assemble_system ()
                                   // formula does not need
                                   // modification since we still deal
                                   // with bilinear functions.
-  QGauss2<dim>  quadrature_formula;
+  QGauss<dim>  quadrature_formula(2);
                                   // Also, the ``FEValues'' objects
                                   // takes care of everything for us
                                   // (or better: it does not really
@@ -802,7 +802,7 @@ void ElasticProblem<dim>::refine_grid ()
 
   typename FunctionMap<dim>::type neumann_boundary;
   KellyErrorEstimator<dim>::estimate (dof_handler,
-                                     QGauss2<dim-1>(),
+                                     QGauss<dim-1>(2),
                                      neumann_boundary,
                                      solution,
                                      estimated_error_per_cell);
@@ -944,8 +944,9 @@ void ElasticProblem<dim>::run ()
                                           // twice before we first
                                           // solve on it. The reason
                                           // is the following: we use
-                                          // the ``Gauss2''
-                                          // quadrature formula for
+                                          // the ``Gauss''
+                                          // quadrature formula with
+                                          // two points in each direction for
                                           // integration of the right
                                           // hand side; that means
                                           // that there are four
index c0dff4e1cc5d70a53c43476c2ef67a13ae6b587b..20441af60e07cf57c078586d61dbaaf3c04a9a04 100644 (file)
@@ -969,8 +969,8 @@ assemble_system_interval (const typename DoFHandler<dim>::active_cell_iterator &
                                   // elements, Gauss formulae with
                                   // two points in each space
                                   // direction are sufficient.
-  QGauss2<dim>   quadrature_formula;
-  QGauss2<dim-1> face_quadrature_formula;
+  QGauss<dim>   quadrature_formula(2);
+  QGauss<dim-1> face_quadrature_formula(2);
   
                                   // Finally, we need objects of type
                                   // ``FEValues'' and

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.