]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Now finally fix LagrangeEquidistant constructor. Add TODO for serialization.
authorMartin Kronbichler <kronbichler@lnm.mw.tum.de>
Tue, 26 Jul 2011 15:12:31 +0000 (15:12 +0000)
committerMartin Kronbichler <kronbichler@lnm.mw.tum.de>
Tue, 26 Jul 2011 15:12:31 +0000 (15:12 +0000)
git-svn-id: https://svn.dealii.org/trunk@23964 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/include/deal.II/base/polynomial.h
deal.II/source/base/polynomial.cc

index 401f040412b0d721c67767d91a962815437a9253..d0d56dc49300190f81cb3cf332379b03e44a3076 100644 (file)
@@ -272,7 +272,7 @@ namespace Polynomials
                                 * product (x-x_0)*(x-x_1)*...*(x-x_n)/weight,
                                 * or not.
                                 */
-    bool is_lagrange_basis;
+    bool in_lagrange_product_form;
 
                                /**
                                 * If the polynomial is in Lagrange product
@@ -677,8 +677,8 @@ namespace Polynomials
   inline
   Polynomial<number>::Polynomial ()
     :
-    is_lagrange_basis (false),
-    lagrange_weight (1.)
+    in_lagrange_product_form (false),
+    lagrange_weight          (1.)
   {}
 
   template <typename number>
@@ -699,7 +699,7 @@ namespace Polynomials
   {
     Assert (coefficients.size() > 0, ExcEmptyObject());
 
-    if (is_lagrange_basis == false)
+    if (in_lagrange_product_form == false)
       {
                                      // Horner scheme
        const unsigned int m=coefficients.size();
@@ -730,8 +730,13 @@ namespace Polynomials
   {
                                      // forward to serialization
                                      // function in the base class.
-    ar &  static_cast<Subscriptor &>(*this);
+    ar & static_cast<Subscriptor &>(*this);
     ar & coefficients;
+                               // TODO: adjust tests for including these
+                               // fields
+    //ar & in_lagrange_product_form;
+    //ar & lagrange_support_points;
+    //ar & lagrange_weight;
   }
 
 }
index 4fafca390f0bee7e50f5ec81a9dc3591d530b3f7..a2557639f32cd8fe53904adfa6d0387a0071401b 100644 (file)
@@ -47,9 +47,9 @@ namespace Polynomials
   template <typename number>
   Polynomial<number>::Polynomial (const std::vector<number> &a)
                   :
-                 coefficients      (a),
-                 is_lagrange_basis (false),
-                 lagrange_weight   (1.)
+                 coefficients             (a),
+                 in_lagrange_product_form (false),
+                 lagrange_weight          (1.)
   {}
 
 
@@ -57,9 +57,9 @@ namespace Polynomials
   template <typename number>
   Polynomial<number>::Polynomial (const unsigned int n)
                   :
-                  coefficients      (n+1, 0.),
-                 is_lagrange_basis (false),
-                 lagrange_weight   (1.)
+                  coefficients             (n+1, 0.),
+                 in_lagrange_product_form (false),
+                 lagrange_weight          (1.)
   {}
 
 
@@ -68,7 +68,7 @@ namespace Polynomials
   Polynomial<number>::Polynomial (const std::vector<Point<1> > &supp,
                                  const unsigned int            center)
                   :
-                  is_lagrange_basis (true)
+                  in_lagrange_product_form (true)
   {
     Assert (supp.size(), ExcEmptyObject());
     lagrange_support_points.reserve (supp.size()-1);
@@ -124,7 +124,7 @@ namespace Polynomials
 
                                // evaluate Lagrange polynomial and
                                // derivatives
-    if (is_lagrange_basis == true)
+    if (in_lagrange_product_form == true)
       {
                                // to compute the value and all derivatives of
                                // a polynomial of the form
@@ -270,7 +270,7 @@ namespace Polynomials
                                // to scale (x-x_0)*(x-x_1)*...*(x-x_n), scale
                                // support points by 1./factor and the weight
                                // likewise
-    if (is_lagrange_basis == true)
+    if (in_lagrange_product_form == true)
       {
        number inv_fact = number(1.)/factor;
        number accumulated_fact = 1.;
@@ -303,7 +303,7 @@ namespace Polynomials
   Polynomial<number>&
   Polynomial<number>::operator *= (const double s)
   {
-    if (is_lagrange_basis == true)
+    if (in_lagrange_product_form == true)
       {
        lagrange_weight *= s;
        return *this;
@@ -323,7 +323,7 @@ namespace Polynomials
   {
                                // if we are in Lagrange form, just append the
                                // new points
-    if (is_lagrange_basis == true && p.is_lagrange_basis == true)
+    if (in_lagrange_product_form == true && p.in_lagrange_product_form == true)
       {
        lagrange_weight *= p.lagrange_weight;
        lagrange_support_points.insert (lagrange_support_points.end(),
@@ -333,9 +333,9 @@ namespace Polynomials
       }
 
                                // cannot retain Lagrange basis, recompute...
-    if (is_lagrange_basis == true)
+    if (in_lagrange_product_form == true)
       {
-       is_lagrange_basis = false;
+       in_lagrange_product_form = false;
        lagrange_support_points.clear();
        lagrange_weight = 1.;
       }
@@ -361,9 +361,9 @@ namespace Polynomials
   {
                                // Lagrange product form cannot reasonably be
                                // retained after polynomial addition
-    if (is_lagrange_basis == true)
+    if (in_lagrange_product_form == true)
       {
-       is_lagrange_basis = false;
+       in_lagrange_product_form = false;
        lagrange_support_points.clear();
        lagrange_weight = 1.;
       }
@@ -387,9 +387,9 @@ namespace Polynomials
   {
                                // Lagrange product form cannot reasonably be
                                // retained after polynomial subtraction
-    if (is_lagrange_basis == true)
+    if (in_lagrange_product_form == true)
       {
-       is_lagrange_basis = false;
+       in_lagrange_product_form = false;
        lagrange_support_points.clear();
        lagrange_weight = 1.;
       }
@@ -496,7 +496,7 @@ namespace Polynomials
                                // shift is simple for a polynomial in product
                                // form, (x-x_0)*(x-x_1)*...*(x-x_n). just add
                                // offset to all shifts
-    if (is_lagrange_basis == true)
+    if (in_lagrange_product_form == true)
       {
        for (unsigned int i=0; i<lagrange_support_points.size(); ++i)
          lagrange_support_points[i] -= offset;
@@ -587,40 +587,41 @@ namespace Polynomials
   }
 // ------------------ class LagrangeEquidistant --------------- //
 
-  LagrangeEquidistant::LagrangeEquidistant (const unsigned int n,
-                                            const unsigned int support_point)
+  namespace internal
   {
-    if (n <= 3)
+    namespace LagrangeEquidistant
+    {
+      std::vector<Point<1> >
+      generate_unit_points (const unsigned int n)
       {
-        this->coefficients.resize(n+1);
-        compute_coefficients(n, support_point, this->coefficients);
+       std::vector<Point<1> > points (n+1);
+       const double one_over_n = 1./n;
+        for (unsigned int k=0;k<=n;++k)
+         points[k](0) = static_cast<double>(k)*one_over_n;
+       return points;
       }
-    else
-      {
-                                         // We have precomputed tables
-                                         // up to degree 3. For
-                                         // higher order, we have to
-                                         // compute by hand.
+    }
+  }
 
-                                         // Start with the constant one
-        this->coefficients.resize(1);
-        this->coefficients[0] = 1.;
 
-                                         // Then compute the Lagrange
-                                         // polynomial as the product
-                                         // of linear factors
-        std::vector<double> two (2, 1.);
 
-        for (unsigned int k=0;k<=n;++k)
-          {
-            if (k != support_point)
-              {
-                two[0] = -1.*k/n;
-                Polynomial<double> factor(two);
-                factor.scale(1.*n/(support_point - k));
-                (*this) *= factor;
-              }
-          }
+  LagrangeEquidistant::LagrangeEquidistant (const unsigned int n,
+                                            const unsigned int support_point)
+    :
+    Polynomial<double> (internal::LagrangeEquidistant::
+                       generate_unit_points (n),
+                       support_point)
+  {
+                               // For polynomial order up to 3, we have
+                               // precomputed weights. Use these weights
+                               // instead of the product form
+    if (n <= 3)
+      {
+       this->in_lagrange_product_form = false;
+       this->lagrange_weight = 1.;
+       this->lagrange_support_points.clear();
+       Assert (this->coefficients.size() == n+1, ExcInternalError());
+        compute_coefficients(n, support_point, this->coefficients);
       }
   }
 

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.