--- /dev/null
+Removed: The deprecated FEValuesBase::get_all_normal_vectors() function has been
+removed. Use FEValuesBase::get_normal_vectors() instead.
+<br>
+(Daniel Arndt, 2020/03/26)
const Tensor<1, spacedim> &
normal_vector(const unsigned int i) const;
- /**
- * Return the normal vectors at all quadrature points represented by
- * this object. See the normal_vector() function for what the normal
- * vectors represent.
- *
- * @dealiiRequiresUpdateFlags{update_normal_vectors}
- *
- * @deprecated Use get_normal_vectors() instead, which returns the exact
- * same thing.
- */
- DEAL_II_DEPRECATED
- const std::vector<Tensor<1, spacedim>> &
- get_all_normal_vectors() const;
-
/**
* Return the normal vectors at all quadrature points represented by
* this object. See the normal_vector() function for what the normal
// change the sign. We take the outward normal.
parallel_data.normal_vectors =
- fe_face_values_cell.get_present_fe_values().get_all_normal_vectors();
+ fe_face_values_cell.get_present_fe_values().get_normal_vectors();
for (unsigned int n = 0; n < n_solution_vectors; ++n)
for (unsigned int component = 0; component < n_components; ++component)
}
parallel_data.neighbor_normal_vectors =
- fe_face_values_neighbor.get_present_fe_values()
- .get_all_normal_vectors();
+ fe_face_values_neighbor.get_present_fe_values().get_normal_vectors();
}
else
{
// call generic evaluate function
parallel_data.neighbor_normal_vectors =
- fe_subface_values.get_present_fe_values().get_all_normal_vectors();
+ fe_subface_values.get_present_fe_values().get_normal_vectors();
local_face_integrals[neighbor_child->face(neighbor_neighbor)] =
integrate_over_face(parallel_data, face, fe_face_values);
// the boundary function times the normal components of the shape
// functions supported on the boundary.
const FEValuesExtractors::Vector vec(first_vector_component);
- const FiniteElement<2> & fe = cell->get_fe();
- const std::vector<Tensor<1, 2>> &normals =
- fe_values.get_all_normal_vectors();
+ const FiniteElement<2> & fe = cell->get_fe();
+ const std::vector<Tensor<1, 2>> &normals = fe_values.get_normal_vectors();
const unsigned int
face_coordinate_direction[GeometryInfo<2>::faces_per_cell] = {1,
1,
// the boundary function times the normal components of the shape
// functions supported on the boundary.
const FEValuesExtractors::Vector vec(first_vector_component);
- const FiniteElement<3> & fe = cell->get_fe();
- const std::vector<Tensor<1, 3>> &normals =
- fe_values.get_all_normal_vectors();
+ const FiniteElement<3> & fe = cell->get_fe();
+ const std::vector<Tensor<1, 3>> &normals = fe_values.get_normal_vectors();
const unsigned int
face_coordinate_directions[GeometryInfo<3>::faces_per_cell][2] = {
{1, 2}, {1, 2}, {2, 0}, {2, 0}, {0, 1}, {0, 1}};
-template <int dim, int spacedim>
-const std::vector<Tensor<1, spacedim>> &
-FEValuesBase<dim, spacedim>::get_all_normal_vectors() const
-{
- Assert(this->update_flags & update_normal_vectors,
- (typename FEValuesBase<dim, spacedim>::ExcAccessToUninitializedField(
- "update_normal_vectors")));
- return get_normal_vectors();
-}
-
-
-
template <int dim, int spacedim>
const std::vector<Tensor<1, spacedim>> &
FEValuesBase<dim, spacedim>::get_normal_vectors() const
if (update_flags & update_normal_vectors)
data.patch_values_scalar.normals =
- this_fe_patch_values.get_all_normal_vectors();
+ this_fe_patch_values.get_normal_vectors();
const typename DoFHandlerType::active_cell_iterator dh_cell(
&cell_and_face->first->get_triangulation(),
if (update_flags & update_normal_vectors)
data.patch_values_system.normals =
- this_fe_patch_values.get_all_normal_vectors();
+ this_fe_patch_values.get_normal_vectors();
const typename DoFHandlerType::active_cell_iterator dh_cell(
&cell_and_face->first->get_triangulation(),
neighbor = neighbor->child(n == 0 ? 1 : 0);
fe_face_values.reinit(cell, n);
- Tensor<1, spacedim> normal = fe_face_values.get_present_fe_values()
- .get_all_normal_vectors()[0];
+ Tensor<1, spacedim> normal =
+ fe_face_values.get_present_fe_values().get_normal_vectors()[0];
if (neighbor.state() == IteratorState::valid)
{
fe_face_values.reinit(neighbor, n == 0 ? 1 : 0);
Tensor<1, spacedim> neighbor_normal =
fe_face_values.get_present_fe_values()
- .get_all_normal_vectors()[0];
+ .get_normal_vectors()[0];
// extract the gradient in normal direction of all the
// components.
Vector<double> & cell_vector) const
{
const std::vector<double> & JxW = fe_v.get_JxW_values();
- const std::vector<Tensor<1, dim>> &normals = fe_v.get_all_normal_vectors();
+ const std::vector<Tensor<1, dim>> &normals = fe_v.get_normal_vectors();
std::vector<Point<dim>> beta(fe_v.n_quadrature_points);
std::vector<double> g(fe_v.n_quadrature_points);
FullMatrix<double> & ue_vi_matrix) const
{
const std::vector<double> & JxW = fe_v.get_JxW_values();
- const std::vector<Tensor<1, dim>> &normals = fe_v.get_all_normal_vectors();
+ const std::vector<Tensor<1, dim>> &normals = fe_v.get_normal_vectors();
std::vector<Point<dim>> beta(fe_v.n_quadrature_points);
beta_function.value_list(fe_v.get_quadrature_points(), beta);
FullMatrix<double> & ue_ve_matrix) const
{
const std::vector<double> & JxW = fe_v.get_JxW_values();
- const std::vector<Tensor<1, dim>> &normals = fe_v.get_all_normal_vectors();
+ const std::vector<Tensor<1, dim>> &normals = fe_v.get_normal_vectors();
std::vector<Point<dim>> beta(fe_v.n_quadrature_points);
for (; cell_i != endc; ++cell_i)
{
fe_values_i.reinit(cell_i);
- cell_normals_i = fe_values_i.get_all_normal_vectors();
+ cell_normals_i = fe_values_i.get_normal_vectors();
cell_i->get_dof_indices(local_dof_indices_i);
cell_DLP_matrix = 0.;
for (cell_j = dof_handler.begin_active(); cell_j != endc; ++cell_j)
{
fe_values_j.reinit(cell_j);
- cell_normals_j = fe_values_j.get_all_normal_vectors();
+ cell_normals_j = fe_values_j.get_normal_vectors();
cell_j->get_dof_indices(local_dof_indices_j);
if (cell_j != cell_i)
fe_values_q.reinit(cell);
cell->get_dof_indices(local_dof_indices);
- cell_normals = fe_values_q.get_all_normal_vectors();
+ cell_normals = fe_values_q.get_normal_vectors();
for (unsigned int i = 0; i < q_iterated.size(); ++i)
{
cell_tangentials[i][0] = cell_normals[i][1];
Assert(dst.size() == 2, ExcDimensionMismatch(dst.size(), 2));
fe_values->reinit(cell);
vector<DerivativeForm<1, 2, 3>> jacobians = fe_values->get_jacobians();
- vector<Tensor<1, 3>> normals = fe_values->get_all_normal_vectors();
+ vector<Tensor<1, 3>> normals = fe_values->get_normal_vectors();
Tensor<1, 3> n, n_c;
Tensor<1, 3> r_c = point - cell->center();
{
fe_values.reinit(cell);
cell->get_dof_indices(local_dof_indices);
- cell_normals = fe_values.get_all_normal_vectors();
+ cell_normals = fe_values.get_normal_vectors();
// The cell tangential is calculated
// in the midpoint of the cell. For
{
fe_values.reinit(cell);
const std::vector<Tensor<1, spacedim>> &cellnormals =
- fe_values.get_all_normal_vectors();
+ fe_values.get_normal_vectors();
const std::vector<Point<spacedim>> &quad_points =
fe_values.get_quadrature_points();
std::vector<Vector<double>> neumann_value_list(
n_face_q_points, Vector<double>(fe.n_components()));
std::vector<Tensor<1, dim>> normal_vector_list(
- fe_face_values.get_all_normal_vectors());
+ fe_face_values.get_normal_vectors());
Tensor<1, dim> neumann_value_vector;
Tensor<1, dim> neumann_value;
Tensor<1, dim> normal_vector;
fe_v_face.reinit(cell, face_no);
const std::vector<Tensor<1, dim>> &normals =
- fe_v_face.get_all_normal_vectors();
+ fe_v_face.get_normal_vectors();
const std::vector<Point<dim>> &quad_points =
fe_v_face.get_quadrature_points();
std::vector<Vector<double>> neumann_value_list(
n_face_q_points, Vector<double>(fe.n_components()));
std::vector<Tensor<1, dim>> normal_vector_list(
- fe_face_values.get_all_normal_vectors());
+ fe_face_values.get_normal_vectors());
Tensor<1, dim> neumann_value_vector;
Tensor<1, dim> neumann_value;
Tensor<1, dim> normal_vector;
const std::vector<double> &JxW =
fe_v.get_present_fe_values().get_JxW_values();
const std::vector<Tensor<1, dim>> &normals =
- fe_v.get_present_fe_values().get_all_normal_vectors();
+ fe_v.get_present_fe_values().get_normal_vectors();
std::vector<Point<dim>> beta(
fe_v.get_present_fe_values().n_quadrature_points);
const std::vector<double> &JxW =
fe_v.get_present_fe_values().get_JxW_values();
const std::vector<Tensor<1, dim>> &normals =
- fe_v.get_present_fe_values().get_all_normal_vectors();
+ fe_v.get_present_fe_values().get_normal_vectors();
std::vector<Point<dim>> beta(
fe_v.get_present_fe_values().n_quadrature_points);
const std::vector<double> &JxW =
fe_v.get_present_fe_values().get_JxW_values();
const std::vector<Tensor<1, dim>> &normals =
- fe_v.get_present_fe_values().get_all_normal_vectors();
+ fe_v.get_present_fe_values().get_normal_vectors();
std::vector<Point<dim>> beta(
fe_v.get_present_fe_values().n_quadrature_points);
fe_values.reinit(cell, face_nr, sub_nr);
const std::vector<Tensor<1, dim>> &normals =
- fe_values.get_all_normal_vectors();
+ fe_values.get_normal_vectors();
unsigned int k = 0;
for (unsigned int ny = 0; ny < ((dim > 2) ? nq : 1); ++ny)
// there should now be two
// normal vectors, one for
// each vertex of the face
- Assert(c1_values.get_all_normal_vectors().size() == 2,
+ Assert(c1_values.get_normal_vectors().size() == 2,
ExcInternalError());
// check that these two