* valued version, namely on the face <i>F</i>
* the vector
* @f[
- * \int_F \Bigl(\gamma (u-g) v - \partial_n u v - (u-g) \partial_n v\Bigr)\;ds.
+ * \int_F \Bigl(\gamma (\mathbf u- \mathbf g) \cdot \mathbf v
+ - \partial_n \mathbf u \cdot \mathbf v
+ - (\mathbf u-\mathbf g) \cdot \partial_n \mathbf v\Bigr)\;ds.
* @f]
*
* Here, <i>u</i> is the finite element function whose values and
}
}
+ /**
+ * Flux for the interior penalty method for the Laplacian applied
+ * to the tangential components of a vector field, namely on
+ * the face <i>F</i> the matrices associated with the bilinear form
+ * @f[
+ * \int_F \Bigl( \gamma [u_\tau][v_\tau] - \{\nabla u_\tau\}[v_\tau\mathbf n] - [u_\tau\mathbf
+ * n]\{\nabla v_\tau\} \Bigr) \; ds.
+ * @f]
+ *
+ * @warning This function is still under development!
+ *
+ * @author Bärbel Janssen, Guido Kanschat
+ * @date 2013
+ */
template <int dim>
void ip_tangential_matrix (
FullMatrix<double> &M11,
}
/**
- * Residual term for the symmetric interior penalty method.
+ * Residual term for the symmetric interior penalty method:
+ * @f[
+ * \int_F \Bigl( \gamma [u][v] - \{\nabla u\}[v\mathbf n] - [u\mathbf
+ * n]\{\nabla v\} \Bigr) \; ds.
+ * @f]
*
* @author Guido Kanschat
* @date 2012
/**
- * Vector-valued residual term for the symmetric interior penalty method.
+ * Vector-valued residual term for the symmetric interior penalty method:
+ * @f[
+ * \int_F \Bigl( \gamma [\mathbf u]\cdot[\mathbf v]
+ - \{\nabla \mathbf u\}[\mathbf v\otimes \mathbf n]
+ - [\mathbf u\otimes \mathbf n]\{\nabla \mathbf v\} \Bigr) \; ds.
+ * @f]
*
* @author Guido Kanschat
* @date 2012