]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Finish documenting.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Mon, 15 Apr 2002 10:15:29 +0000 (10:15 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Mon, 15 Apr 2002 10:15:29 +0000 (10:15 +0000)
git-svn-id: https://svn.dealii.org/trunk@5651 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-13/step-13.cc

index c2b5205a8a1b2cc9af5eaf91b5e52d09113d52c5..0c3749b5622127ff8802407c987ae13f5b8e8171 100644 (file)
@@ -85,8 +85,8 @@
                                 // refer to.
                                 //
                                 // From an abstract point of view, we
-                                // declare an abstract base class
-                                // that provides and evaluation
+                                // declare a pure base class
+                                // that provides an evaluation
                                 // operator ``operator()'' which will
                                 // do the evaluation of the solution
                                 // (whatever derived classes might
                                 // code into different modules, we
                                 // put the evaluation classes into a
                                 // namespace of their own. This makes
-                                // it easier to actually solver
+                                // it easier to actually solve
                                 // different equations in the same
                                 // program, by assembling it from
                                 // existing building blocks. The
@@ -374,10 +374,10 @@ namespace Evaluation
                                             // elements, were the
                                             // support points for the
                                             // shape functions
-                                            // happend to be located
+                                            // happen to be located
                                             // at the vertices, but
                                             // are not associated
-                                            // with the vertices bur
+                                            // with the vertices but
                                             // rather with the cell
                                             // interior, since
                                             // association with
@@ -414,13 +414,21 @@ namespace Evaluation
                                             // index of a vertex if
                                             // there were none.
                                             //
-                                            // We briefly note that
+                                            // We stress again that
                                             // this restriction on
                                             // the allowed finite
                                             // elements should be
                                             // stated in the class
                                             // documentation.
-           
+
+                                            // Since we found the
+                                            // right point, we now
+                                            // set the respective
+                                            // flag and exit the
+                                            // innermost loop. The
+                                            // outer loop will the
+                                            // also be terminated due
+                                            // to the set flag.
            evaluation_point_found = true;
            break;
          };
@@ -453,10 +461,10 @@ namespace Evaluation
                                     // your main function (as this
                                     // program has), you will catch
                                     // all exceptions that are not
-                                    // caught somewhere between and
-                                    // thus already handled, and this
-                                    // additional information will
-                                    // help you find out what
+                                    // caught somewhere in between
+                                    // and thus already handled, and
+                                    // this additional information
+                                    // will help you find out what
                                     // happened and where it went
                                     // wrong.
     AssertThrow (evaluation_point_found,
@@ -541,17 +549,18 @@ namespace Evaluation
                                   // graphics formats are represented
                                   // by the enum values ``ucd'',
                                   // ``gnuplot'', ``povray'',
-                                  // ``eps'', ``gmv'', and ``vtk'',
-                                  // but this list will certainly
-                                  // grow over time. Now, within
-                                  // various functions of that base
-                                  // class, you can use values of
-                                  // this type to get information
+                                  // ``eps'', ``gmv'', ``tecplot'',
+                                  // ``tecplot_binary'', ``dx'', and
+                                  // ``vtk'', but this list will
+                                  // certainly grow over time. Now,
+                                  // within various functions of that
+                                  // base class, you can use values
+                                  // of this type to get information
                                   // about these graphics formats
                                   // (for example the default suffix
                                   // used for files of each format),
                                   // and you can call a generic
-                                  // ``write'' function, which the
+                                  // ``write'' function, which then
                                   // branches to the
                                   // ``write_gnuplot'',
                                   // ``write_ucd'', etc functions
@@ -627,7 +636,7 @@ namespace Evaluation
                                   // The somewhat complicated use of
                                   // the stringstream class,
                                   // involving support from the
-                                  // preprocessor, as already
+                                  // preprocessor, is as already
                                   // explained in the step-5 example
                                   // program.
   template <int dim>
@@ -659,14 +668,17 @@ namespace Evaluation
   };
 
 
+
+                                  // @sect4{Other evaluations}
+  
                                   // In practical applications, one
                                   // would add here a list of other
                                   // possible evaluation classes,
-                                  // representing quantities of
-                                  // interest that one is interested
-                                  // in. For this examples, that much
-                                  // shall be sufficient, so we close
-                                  // the namespace.
+                                  // representing quantities that one
+                                  // may be interested in. For this
+                                  // example, that much shall be
+                                  // sufficient, so we close the
+                                  // namespace.
 };
 
   
@@ -682,12 +694,12 @@ namespace Evaluation
                                 //
                                 // Since we have discussed Laplace
                                 // solvers already in considerable
-                                // detail in previous examples, the
+                                // detail in previous examples, there
                                 // is not much new stuff
                                 // following. Rather, we have to a
                                 // great extent cannibalized previous
                                 // examples and put them, in slightly
-                                // different form, into this examples
+                                // different form, into this example
                                 // program. We will therefore mostly
                                 // be concerned with discussing the
                                 // differences to previous examples.
@@ -719,13 +731,14 @@ namespace LaplaceSolver
                                   // any other stationary problem. It
                                   // provides declarations of
                                   // functions that shall, in derived
-                                  // classes, solver a problem,
+                                  // classes, solve a problem,
                                   // postprocess the solution with a
                                   // list of evaluation objects, and
                                   // refine the grid,
                                   // respectively. None of these
                                   // functions actually does
-                                  // something itself.
+                                  // something itself in the base
+                                  // class.
                                   //
                                   // Due to the lack of actual
                                   // functionality, the programming
@@ -733,10 +746,10 @@ namespace LaplaceSolver
                                   // base classes reminds of the
                                   // style used in Smalltalk or Java
                                   // programs, where all classes are
-                                  // even derived from entirely
-                                  // abstract classes ``Object'',
-                                  // even number representations. The
-                                  // author admits that he does not
+                                  // derived from entirely abstract
+                                  // classes ``Object'', even number
+                                  // representations. The author
+                                  // admits that he does not
                                   // particularly like the use of
                                   // such a style in C++, as it puts
                                   // style over reason. Furthermore,
@@ -750,7 +763,7 @@ namespace LaplaceSolver
                                   // accessing data, not doing
                                   // computations, and therefore
                                   // quickly return; the overhead of
-                                  // virtual functions then can be
+                                  // virtual functions can then be
                                   // significant. The opinion of the
                                   // author is to have abstract base
                                   // classes wherever at least some
@@ -801,6 +814,15 @@ namespace LaplaceSolver
                                   // classes refine or coarsen the
                                   // triangulation within the
                                   // ``refine_grid'' function.
+                                  //
+                                  // Finally, we have a function
+                                  // ``n_dofs'' is only a tool for
+                                  // the driver functions to decide
+                                  // whether we want to go on with
+                                  // mesh refinement or not. It
+                                  // returns the number of degrees of
+                                  // freedom the present simulation
+                                  // has.
   template <int dim>
   class Base
   {
@@ -811,7 +833,8 @@ namespace LaplaceSolver
       virtual void solve_problem () = 0;
       virtual void postprocess (const Evaluation::EvaluationBase<dim> &postprocessor) const = 0;
       virtual void refine_grid () = 0;
-
+      virtual unsigned int n_dofs () const = 0;
+      
     protected:
       const SmartPointer<Triangulation<dim> > triangulation;
   };
@@ -832,7 +855,7 @@ namespace LaplaceSolver
   {};
   
 
-                                  // @sect3{A general solver class}
+                                  // @sect4{A general solver class}
 
                                   // Following now the main class
                                   // that implements assembling the
@@ -866,6 +889,41 @@ namespace LaplaceSolver
                                   // etc. The latter happens
                                   // frequently in non-linear
                                   // problems.
+                                  //
+                                  // As we mentioned previously, the
+                                  // actual content of this class is
+                                  // not new, but a mixture of
+                                  // various techniques already used
+                                  // in previous examples. We will
+                                  // therefore not discuss them in
+                                  // detail, but refer the reader to
+                                  // these programs.
+                                  //
+                                  // Basically, in a few words, the
+                                  // constructor of this class takes
+                                  // pointers to a triangulation, a
+                                  // finite element, and a function
+                                  // object representing the boundary
+                                  // values. These are either passed
+                                  // down to the base class's
+                                  // constructor, or are stored and
+                                  // used to generate a
+                                  // ``DoFHandler'' object later.
+                                  //
+                                  // The ``solve_problem'' sets up
+                                  // the data structures for the
+                                  // actual solution, calls the
+                                  // functions to assemble the linear
+                                  // system, and solves it.
+                                  //
+                                  // The ``postprocess'' function
+                                  // finally takes an evaluation
+                                  // object and applies it to the
+                                  // computed solution.
+                                  //
+                                  // The ``n_dofs'' function finally
+                                  // implements the pure virtual
+                                  // function of the base class.
   template <int dim>
   class Solver : public virtual Base<dim>
   {
@@ -873,18 +931,59 @@ namespace LaplaceSolver
       Solver (Triangulation<dim>       &triangulation,
              const FiniteElement<dim> &fe,
              const Function<dim>      &boundary_values);
-      virtual ~Solver ();
-      virtual void solve_problem ();
-      virtual void postprocess (const Evaluation::EvaluationBase<dim> &postprocessor) const;
+      virtual
+      ~Solver ();
 
+      virtual
+      void
+      solve_problem ();
+
+      virtual
+      void
+      postprocess (const Evaluation::EvaluationBase<dim> &postprocessor) const;
+
+      virtual
+      unsigned int
+      n_dofs () const;
+      
+                                      // In the protected section of
+                                      // this class, we first have a
+                                      // number of member variables,
+                                      // of which the use should be
+                                      // clear from the previous
+                                      // examples:
     protected:
       const SmartPointer<const FiniteElement<dim> >  fe;
       DoFHandler<dim>                                dof_handler;
       Vector<double>                                 solution;
       const SmartPointer<const Function<dim> >       boundary_values;
-      
+
+                                      // Then we declare an abstract
+                                      // function that will be used
+                                      // to assemble the right hand
+                                      // side. As explained above,
+                                      // there are various cases for
+                                      // which this action differs
+                                      // strongly in what is
+                                      // necessary, so we defer this
+                                      // to derived classes:
       virtual void assemble_rhs (Vector<double> &rhs) const = 0;
     
+                                      // Next, in the private
+                                      // section, we have a small
+                                      // class which represents an
+                                      // entire linear system, i.e. a
+                                      // matrix, a right hand side,
+                                      // and a solution vector, as
+                                      // well as the constraints that
+                                      // are applied to it, such as
+                                      // those due to hanging
+                                      // nodes. Its constructor
+                                      // initializes the various
+                                      // subobjects, and there is a
+                                      // function that implements a
+                                      // conjugate gradient method as
+                                      // solver.
     private:
       struct LinearSystem
       {
@@ -898,17 +997,44 @@ namespace LaplaceSolver
          Vector<double>       rhs;
       };
 
-      void assemble_linear_system (LinearSystem &linear_system);
-
-      void assemble_matrix (LinearSystem                                         &linear_system,
-                           const typename DoFHandler<dim>::active_cell_iterator &begin_cell,
-                           const typename DoFHandler<dim>::active_cell_iterator &end_cell,
-                           Threads::ThreadMutex                                 &mutex) const      ;
+                                      // Finally, there is a pair of
+                                      // functions which will be used
+                                      // to assemble the actual
+                                      // system matrix. It calls the
+                                      // virtual function assembling
+                                      // the right hand side, and
+                                      // installs a number threads
+                                      // each running the second
+                                      // function which assembles
+                                      // part of the system
+                                      // matrix. The mechanism for
+                                      // doing so is the same as in
+                                      // the step-9 example program.
+      void
+      assemble_linear_system (LinearSystem &linear_system);
+
+      void
+      assemble_matrix (LinearSystem                                         &linear_system,
+                      const typename DoFHandler<dim>::active_cell_iterator &begin_cell,
+                      const typename DoFHandler<dim>::active_cell_iterator &end_cell,
+                      Threads::ThreadMutex                                 &mutex) const      ;
   };
 
 
 
-
+                                  // Now here comes the constructor
+                                  // of the class. It does not do
+                                  // much except store pointers to
+                                  // the objects given, and generate
+                                  // ``DoFHandler'' object
+                                  // initialized with the given
+                                  // pointer to a triangulation. This
+                                  // causes the DoF handler to store
+                                  // that pointer, but does not
+                                  // already generate a finite
+                                  // element numbering (we only ask
+                                  // for that in the
+                                  // ``solve_problem'' function).
   template <int dim>
   Solver<dim>::Solver (Triangulation<dim>       &triangulation,
                       const FiniteElement<dim> &fe,
@@ -921,6 +1047,10 @@ namespace LaplaceSolver
   {};
 
 
+                                  // The destructor is simple, it
+                                  // only clears the information
+                                  // stored in the DoF handler object
+                                  // to release the memory.
   template <int dim>
   Solver<dim>::~Solver () 
   {
@@ -928,7 +1058,19 @@ namespace LaplaceSolver
   };
 
 
-
+                                  // The next function is the one
+                                  // which delegates the main work in
+                                  // solving the problem: it sets up
+                                  // the DoF handler object with the
+                                  // finite element given to the
+                                  // constructor of this object, the
+                                  // creates an object that denotes
+                                  // the linear system (i.e. the
+                                  // matrix, the right hand side
+                                  // vector, and the solution
+                                  // vector), calls the function to
+                                  // assemble it, and finally solves
+                                  // it:
   template <int dim>
   void
   Solver<dim>::solve_problem ()
@@ -942,43 +1084,79 @@ namespace LaplaceSolver
   };
 
 
-
+                                  // As stated above, the
+                                  // ``postprocess'' function takes
+                                  // an evaluation object, and
+                                  // applies it to the computed
+                                  // solution. This function may be
+                                  // called multiply, once for each
+                                  // evaluation of the solution which
+                                  // the user required.
   template <int dim>
-  Solver<dim>::LinearSystem::
-  LinearSystem (const DoFHandler<dim> &dof_handler)
+  void
+  Solver<dim>::
+  postprocess (const Evaluation::EvaluationBase<dim> &postprocessor) const
   {
-    hanging_node_constraints.clear ();
-    DoFTools::make_hanging_node_constraints (dof_handler,
-                                            hanging_node_constraints);
-    hanging_node_constraints.close ();
-
-    sparsity_pattern.reinit (dof_handler.n_dofs(),
-                            dof_handler.n_dofs(),
-                            dof_handler.max_couplings_between_dofs());
-    DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-
-    hanging_node_constraints.condense (sparsity_pattern);
-
-    sparsity_pattern.compress();
-
-    matrix.reinit (sparsity_pattern);
-    rhs.reinit (dof_handler.n_dofs());
+    postprocessor (dof_handler, solution);
   };
 
 
+                                  // The ``n_dofs'' function should
+                                  // be self-explanatory:
+  template <int dim>
+  unsigned int
+  Solver<dim>::n_dofs () const
+  {
+    return dof_handler.n_dofs();
+  };
+  
 
+                                  // The following function assembles
+                                  // matrix and right hand side of
+                                  // the linear system to be solved
+                                  // in each step. It goes along the
+                                  // same lines as used in previous
+                                  // examples, so we explain it only
+                                  // briefly:
   template <int dim>
   void
   Solver<dim>::assemble_linear_system (LinearSystem &linear_system)
   {
-    typedef typename DoFHandler<dim>::active_cell_iterator active_cell_iterator;
-
+                                    // First define a convenience
+                                    // abbreviation for these lengthy
+                                    // iterator names...
+    typedef
+      typename DoFHandler<dim>::active_cell_iterator
+      active_cell_iterator;
+
+                                    // ... and use it to split up the
+                                    // set of cells into a number of
+                                    // pieces of equal size. The
+                                    // number of blocks is set to the
+                                    // default number of threads to
+                                    // be used, which by default is
+                                    // set to the number of
+                                    // processors found in your
+                                    // computer at startup of the
+                                    // program:
     const unsigned int n_threads = multithread_info.n_default_threads;
     std::vector<std::pair<active_cell_iterator,active_cell_iterator> >
       thread_ranges 
       = Threads::split_range<active_cell_iterator> (dof_handler.begin_active (),
                                                    dof_handler.end (),
                                                    n_threads);
+
+                                    // These ranges are then assigned
+                                    // to a number of threads which
+                                    // we create next, which each
+                                    // assemble the local cell
+                                    // matrices on the assigned
+                                    // cells, and fill the matrix
+                                    // object with it. Since there is
+                                    // need for synchronization when
+                                    // filling the same matrix from
+                                    // different threads, we need a
+                                    // mutex here:
     Threads::ThreadMutex mutex;
     Threads::ThreadManager thread_manager;
     for (unsigned int thread=0; thread<n_threads; ++thread)
@@ -989,17 +1167,43 @@ namespace LaplaceSolver
                                     thread_ranges[thread].first,
                                     thread_ranges[thread].second,
                                     mutex));
+
+                                    // While the spawned threads
+                                    // assemble the system matrix, we
+                                    // can already compute the right
+                                    // hand side vector in the main
+                                    // thread, and condense away the
+                                    // constraints due to hanging
+                                    // nodes:
     assemble_rhs (linear_system.rhs);
     linear_system.hanging_node_constraints.condense (linear_system.rhs);
 
-    thread_manager.wait ();
-    linear_system.hanging_node_constraints.condense (linear_system.matrix);
-
+                                    // And while we're already at it
+                                    // to compute things in parallel,
+                                    // interpolating boundary values
+                                    // is one more thing that can be
+                                    // done independently, so we do
+                                    // it here:
     std::map<unsigned int,double> boundary_value_map;
     VectorTools::interpolate_boundary_values (dof_handler,
                                              0,
                                              *boundary_values,
                                              boundary_value_map);
+    
+    
+                                    // If this is done, wait for the
+                                    // matrix assembling threads, and
+                                    // condense the constraints in
+                                    // the matrix as well:
+    thread_manager.wait ();
+    linear_system.hanging_node_constraints.condense (linear_system.matrix);
+
+                                    // Now that we have the linear
+                                    // system, we can also treat
+                                    // boundary values, which need to
+                                    // be eliminated from both the
+                                    // matrix and the right hand
+                                    // side:
     MatrixTools::apply_boundary_values (boundary_value_map,
                                        linear_system.matrix,
                                        solution,
@@ -1007,7 +1211,15 @@ namespace LaplaceSolver
 
   };
 
-  
+
+                                  // The second of this pair of
+                                  // functions takes a range of cell
+                                  // iterators, and assembles the
+                                  // system matrix on this part of
+                                  // the domain. Since it's actions
+                                  // have all been explained in
+                                  // previous programs, we do not
+                                  // comment on it any more.
   template <int dim>
   void
   Solver<dim>::assemble_matrix (LinearSystem                                         &linear_system,
@@ -1060,7 +1272,111 @@ namespace LaplaceSolver
   };
 
 
+                                  // Now for the functions that
+                                  // implement actions in the linear
+                                  // system class. First, the
+                                  // constructor initializes all data
+                                  // elements to their correct sizes,
+                                  // and sets up a number of
+                                  // additional data structures, such
+                                  // as constraints due to hanging
+                                  // nodes. Since setting up the
+                                  // hanging nodes and finding out
+                                  // about the nonzero elements of
+                                  // the matrix is independent, we do
+                                  // that in parallel (if the library
+                                  // was configured to use
+                                  // concurrency, at least;
+                                  // otherwise, the actions are
+                                  // performed sequentially). Note
+                                  // that we spawn only one thread,
+                                  // and do the second action in the
+                                  // main thread.
+                                  //
+                                  // Note that taking up the address
+                                  // of the
+                                  // ``DoFTools::make_hanging_node_constraints''
+                                  // function is a little tricky,
+                                  // since there are actually three
+                                  // of them, one for each supported
+                                  // space dimension. Taking
+                                  // addresses of overloaded
+                                  // functions is somewhat
+                                  // complicated in C++, since the
+                                  // address-of operator ``&'' in
+                                  // that case returns more like a
+                                  // set of values (the addresses of
+                                  // all functions with that name),
+                                  // and selecting the right one is
+                                  // then the next step. If the
+                                  // context dictates which one to
+                                  // take (for example by assigning
+                                  // to a function pointer of known
+                                  // type), then the compiler can do
+                                  // that by itself, but if this set
+                                  // of pointers shall be given as
+                                  // the argument to a function that
+                                  // takes a template, the compiler
+                                  // could choose all without having
+                                  // a preference for one. We
+                                  // therefore have to make it clear
+                                  // to the compiler which one we
+                                  // would like to have; for this, we
+                                  // could use a cast, but for more
+                                  // clarity, we assign it to a
+                                  // temporary ``mhnc_p'' (short for
+                                  // ``pointer to
+                                  // make_hanging_node_constraints'')
+                                  // with the right type, and using
+                                  // this pointer instead.
+  template <int dim>
+  Solver<dim>::LinearSystem::
+  LinearSystem (const DoFHandler<dim> &dof_handler)
+  {
+    hanging_node_constraints.clear ();
+
+    void (*mhnc_p) (const DoFHandler<dim> &,
+                   ConstraintMatrix      &)
+      = &DoFTools::make_hanging_node_constraints;
+    
+    Threads::ThreadManager thread_manager;
+    Threads::spawn (thread_manager,
+                   Threads::encapsulate (mhnc_p)
+                   .collect_args (dof_handler,
+                                  hanging_node_constraints));
+
+    sparsity_pattern.reinit (dof_handler.n_dofs(),
+                            dof_handler.n_dofs(),
+                            dof_handler.max_couplings_between_dofs());
+    DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
+
+                                    // Wait until the
+                                    // ``hanging_node_constraints''
+                                    // object is fully set up, then
+                                    // close it and use it to
+                                    // condense the sparsity pattern:
+    thread_manager.wait ();
+    hanging_node_constraints.close ();
+    hanging_node_constraints.condense (sparsity_pattern);
+
+                                    // Finally, close the sparsity
+                                    // pattern, initialize the
+                                    // matrix, and set the right hand
+                                    // side vector to the right size.
+    sparsity_pattern.compress();
+    matrix.reinit (sparsity_pattern);
+    rhs.reinit (dof_handler.n_dofs());
+  };
+
+
 
+                                  // The second function of this
+                                  // class simply solves the linear
+                                  // system by a preconditioned
+                                  // conjugate gradient method. This
+                                  // has been extensively discussed
+                                  // before, so we don't dwell into
+                                  // it any more.
   template <int dim>
   void
   Solver<dim>::LinearSystem::solve (Vector<double> &solution) const
@@ -1079,17 +1395,42 @@ namespace LaplaceSolver
 
 
 
-  template <int dim>
-  void
-  Solver<dim>::
-  postprocess (const Evaluation::EvaluationBase<dim> &postprocessor) const
-  {
-    postprocessor (dof_handler, solution);
-  };
-  
 
-//----------------------------------------------------------    
+                                  // @sect4{A primal solver}
 
+                                  // In the previous section, a base
+                                  // class for Laplace solvers was
+                                  // implemented, that lacked the
+                                  // functionality to assemble the
+                                  // right hand side vector, however,
+                                  // for reasons that were explained
+                                  // there. Now we implement a
+                                  // corresponding class that can do
+                                  // this for the case that the right
+                                  // hand side of a problem is given
+                                  // as a function object.
+                                  //
+                                  // The actions of the class are
+                                  // rather what you have seen
+                                  // already in previous examples
+                                  // already, so a brief explanation
+                                  // should suffice: the constructor
+                                  // takes the same data as does that
+                                  // of the underlying class (to
+                                  // which it passes all information)
+                                  // except for one function object
+                                  // that denotes the right hand side
+                                  // of the problem. A pointer to
+                                  // this object is stored (again as
+                                  // a ``SmartPointer'', in order to
+                                  // make sure that the function
+                                  // object is not deleted as long as
+                                  // it is still used by this class).
+                                  //
+                                  // The only functional part of this
+                                  // class is the ``assemble_rhs''
+                                  // method that does what its name
+                                  // suggests.
   template <int dim>
   class PrimalSolver : public Solver<dim>
   {
@@ -1104,7 +1445,9 @@ namespace LaplaceSolver
   };
 
 
-
+                                  // The constructor of this class
+                                  // basically does what it is
+                                  // announced to do above...
   template <int dim>
   PrimalSolver<dim>::
   PrimalSolver (Triangulation<dim>       &triangulation,
@@ -1119,6 +1462,11 @@ namespace LaplaceSolver
 
 
 
+                                  // ... as does the ``assemble_rhs''
+                                  // function. Since this is
+                                  // explained in several of the
+                                  // previous example programs, we
+                                  // leave it at that.
   template <int dim>
   void
   PrimalSolver<dim>::
@@ -1169,8 +1517,93 @@ namespace LaplaceSolver
   };
 
 
-//----------------------------------------------------------    
+                                  // @sect4{Global refinement}
+
+                                  // By now, all functions of the
+                                  // abstract base class except for
+                                  // the ``refine_grid'' function
+                                  // have been implemented. We will
+                                  // now have two classes that
+                                  // implement this function for the
+                                  // ``PrimalSolver'' class, one
+                                  // doing global refinement, one a
+                                  // form of local refinement.
+                                  //
+                                  // The first, doing global
+                                  // refinement, is rather simple:
+                                  // its main function just calls
+                                  // ``triangulation->refine_global
+                                  // (1);'', which does all the work.
+                                  //
+                                  // Note that since the ``Base''
+                                  // base class of the ``Solver''
+                                  // class is virtual, we have to
+                                  // declare a constructor that
+                                  // initializes the immediate base
+                                  // class as well as the abstract
+                                  // virtual one.
+                                  //
+                                  // Apart from this technical
+                                  // complication, the class is
+                                  // probably simple enough to be
+                                  // left without further comments.
+  template <int dim>
+  class RefinementGlobal : public PrimalSolver<dim>
+  {
+    public:
+      RefinementGlobal (Triangulation<dim>       &coarse_grid,
+                       const FiniteElement<dim> &fe,
+                       const Function<dim>      &rhs_function,
+                       const Function<dim>      &boundary_values);
+
+      virtual void refine_grid ();
+  };
+
+
+
+  template <int dim>
+  RefinementGlobal<dim>::
+  RefinementGlobal (Triangulation<dim>       &coarse_grid,
+                   const FiniteElement<dim> &fe,
+                   const Function<dim>      &rhs_function,
+                   const Function<dim>      &boundary_values)
+                 :
+                 Base<dim> (coarse_grid),
+                  PrimalSolver<dim> (coarse_grid, fe,
+                                    rhs_function, boundary_values)
+  {};
+
+
 
+  template <int dim>
+  void
+  RefinementGlobal<dim>::refine_grid ()
+  {
+    triangulation->refine_global (1);
+  };
+
+
+                                  // @sect4{Local refinement by the Kelly error indicator}
+
+                                  // The second class implementing
+                                  // refinement strategies uses the
+                                  // Kelly refinemet indicator used
+                                  // in various example programs
+                                  // before. Since this indicator is
+                                  // already implemented in a class
+                                  // of its own inside the deal.II
+                                  // library, there is not much t do
+                                  // here except cal the function
+                                  // computing the indicator, then
+                                  // using it to select a number of
+                                  // cells for refinement and
+                                  // coarsening, and refinement the
+                                  // mesh accordingly.
+                                  //
+                                  // Again, this should now be
+                                  // sufficiently standard to allow
+                                  // the omission of further
+                                  // comments.
   template <int dim>
   class RefinementKelly : public PrimalSolver<dim>
   {
@@ -1214,43 +1647,6 @@ namespace LaplaceSolver
     triangulation->execute_coarsening_and_refinement ();
   };
 
-
-
-//----------------------------------------------------------    
-
-  template <int dim>
-  class RefinementGlobal : public PrimalSolver<dim>
-  {
-    public:
-      RefinementGlobal (Triangulation<dim>       &coarse_grid,
-                       const FiniteElement<dim> &fe,
-                       const Function<dim>      &rhs_function,
-                       const Function<dim>      &boundary_values);
-
-      virtual void refine_grid ();
-  };
-
-
-
-  template <int dim>
-  RefinementGlobal<dim>::
-  RefinementGlobal (Triangulation<dim>       &coarse_grid,
-                   const FiniteElement<dim> &fe,
-                   const Function<dim>      &rhs_function,
-                   const Function<dim>      &boundary_values)
-                 :
-                 Base<dim> (coarse_grid),
-    PrimalSolver<dim> (fe, rhs_function, boundary_values)
-  {};
-
-
-
-  template <int dim>
-  void
-  RefinementGlobal<dim>::refine_grid ()
-  {
-    triangulation->refine_global (1);
-  };
 };
 
 
@@ -1342,17 +1738,62 @@ RightHandSide<dim>::value (const Point<dim>   &p,
 
                                 // @sect3{The driver routines}
 
-
+                                // What is now missing are only the
+                                // functions that actually select the
+                                // various options, and run the
+                                // simulation on successively finer
+                                // grids to monitor the progress as
+                                // the mesh is refined.
+                                //
+                                // This we do in the following
+                                // function: it takes a solver
+                                // object, and a list of
+                                // postprocessing (evaluation)
+                                // objects, and runs them with
+                                // intermittent mesh refinement:
 template <int dim>
 void
 run_simulation (LaplaceSolver::Base<dim>                     &solver,
                const std::list<Evaluation::EvaluationBase<dim> *> &postprocessor_list)
 {
-  const unsigned int max_steps = 10;
-  for (unsigned int step=0; step<max_steps; ++step)
+                                  // We will give an indicator of the
+                                  // step we are presently computing,
+                                  // in order to keep the user
+                                  // informed that something is still
+                                  // happening, and that the program
+                                  // is not in an endless loop. This
+                                  // is the head of this status line:
+  std::cout << "Refinement cycle: ";
+
+                                  // Then start a loop which only
+                                  // terminates once the number of
+                                  // degrees of freedom is larger
+                                  // than 20,000 (you may of course
+                                  // change this limit, if you need
+                                  // more -- or less -- accuracy from
+                                  // your program).
+  for (unsigned int step=0; true; ++step)
     {
-      std::cout << "Refinement cycle " << step << std::endl;
-      
+                                      // Then give the ``alive''
+                                      // indication for this
+                                      // iteration. Note that the
+                                      // ``std::flush'' is needed to
+                                      // have the text actually
+                                      // appear on the screen, rather
+                                      // than only in some buffer
+                                      // that is only flushed the
+                                      // next time we issue an
+                                      // end-line.
+      std::cout << step << " " << std::flush;
+
+                                      // Now solve the problem on the
+                                      // present grid, and run the
+                                      // evaluators on it. The long
+                                      // type name of iterators into
+                                      // the list is a little
+                                      // annoying, but could be
+                                      // shortened by a typedef, if
+                                      // so desired.
       solver.solve_problem ();
 
       for (typename std::list<Evaluation::EvaluationBase<dim> *>::const_iterator
@@ -1363,49 +1804,142 @@ run_simulation (LaplaceSolver::Base<dim>                     &solver,
          solver.postprocess (**i);
        };
 
-      if (step!=max_steps-1)
+
+                                      // Now check whether more
+                                      // iterations are required, or
+                                      // whether the loop shall be
+                                      // ended:
+      if (solver.n_dofs() < 20000)
        solver.refine_grid ();
+      else
+       break;
     };
+
+                                  // Finally end the line in which we
+                                  // displayed status reports:
+  std::cout << std::endl;
 };
 
 
+
+                                // The final function is one which
+                                // takes the name of a solver
+                                // (presently "kelly" and "global"
+                                // are allowed), creates a solver
+                                // object out of it using a coarse
+                                // grid (in this case the ubiquitous
+                                // unit square) and a finite element
+                                // object (here the likewise
+                                // ubiquitous bilinear one), and uses
+                                // that solver to ask for the
+                                // solution of the problem on a
+                                // sequence of successively refined
+                                // grids.
+                                //
+                                // The function also sets up two of
+                                // evaluation functions, one
+                                // evaluating the solution at the
+                                // point (0.5,0.5), the other writing
+                                // out the solution to a file.
 template <int dim>
-void solve_problem_kelly () 
-{      
+void solve_problem (const std::string &solver_name) 
+{
+                                  // First minor task: tell the user
+                                  // what is going to happen. Thus
+                                  // write a header line, and a line
+                                  // with all '-' characters of the
+                                  // same length as the first one
+                                  // right below.
+  const std::string header = "Running tests with \"" + solver_name +
+                            "\" refinement criterion:";
+  std::cout << header << std::endl
+           << std::string (header.size(), '-') << std::endl;
+
+                                  // Then set up triangulation,
+                                  // finite element, etc.
   Triangulation<dim> triangulation;
   GridGenerator::hyper_cube (triangulation, -1, 1);
   triangulation.refine_global (2);
-  FE_Q<dim> fe(1);
+  const FE_Q<dim> fe(1);
   const RightHandSide<dim> rhs_function;
   const Solution<dim>      boundary_values;
-      
-  LaplaceSolver::RefinementKelly<dim> kelly (triangulation, fe,
-                                            rhs_function,
-                                            boundary_values);
+
+                                  // Create a solver object of the
+                                  // kind indicated by the argument
+                                  // to this function. If the name is
+                                  // not recognized, throw an
+                                  // exception!
+  LaplaceSolver::Base<dim> * solver = 0;
+  if (solver_name == "global")
+    solver = new LaplaceSolver::RefinementGlobal<dim> (triangulation, fe,
+                                                      rhs_function,
+                                                      boundary_values);
+  else if (solver_name == "kelly")
+    solver = new LaplaceSolver::RefinementKelly<dim> (triangulation, fe,
+                                                     rhs_function,
+                                                     boundary_values);
+  else
+    AssertThrow (false, ExcNotImplemented());
+
+                                  // Next create a table object in
+                                  // which the values of the
+                                  // numerical solution at the point
+                                  // (0.5,0.5) will be stored, and
+                                  // create a respective evaluation
+                                  // object:
   TableHandler results_table;
-  
   Evaluation::PointValueEvaluation<dim>
-    postprocessor1 (Point<dim>(.5,.5), results_table);
+    postprocessor1 (Point<dim>(0.5,0.5), results_table);
+
+                                  // Also generate an evaluator which
+                                  // writes out the solution:
   Evaluation::SolutionOutput<dim>
-    postprocessor2 ("solution-kelly", DataOut<dim>::gnuplot);
+    postprocessor2 (std::string("solution-")+solver_name,
+                   DataOut<dim>::gnuplot);
+
+                                  // Take these two evaluation
+                                  // objects and put them in a
+                                  // list...
   std::list<Evaluation::EvaluationBase<dim> *> postprocessor_list;
   postprocessor_list.push_back (&postprocessor1);
   postprocessor_list.push_back (&postprocessor2);
-  
-  run_simulation (kelly, postprocessor_list);
 
+                                  // ... which we can then pass on to
+                                  // the function that actually runs
+                                  // the simulation on successively
+                                  // refined grids:
+  run_simulation (*solver, postprocessor_list);
+
+                                  // When this all is done, write out
+                                  // the results of the point
+                                  // evaluations, and finally delete
+                                  // the solver object:
   results_table.write_text (std::cout);
+  delete solver;
+
+                                  // And one blank line after all
+                                  // results:
+  std::cout << std::endl;
 };
 
 
-    
+
+                                // There is not much to say about the
+                                // main function. It follows the same
+                                // pattern as in all previous
+                                // examples, with attempts to catch
+                                // thrown exceptions, and displaying
+                                // as much information as possible if
+                                // we should get some. The rest is
+                                // self-explanatory.
 int main () 
 {
   try
     {
       deallog.depth_console (0);
 
-      solve_problem_kelly<2> ();
+      solve_problem<2> ("global");
+      solve_problem<2> ("kelly");      
     }
   catch (std::exception &exc)
     {

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.