]> https://gitweb.dealii.org/ - dealii.git/commitdiff
updated doc, but not tested
authorGuido Kanschat <dr.guido.kanschat@gmail.com>
Fri, 12 Feb 2010 17:27:40 +0000 (17:27 +0000)
committerGuido Kanschat <dr.guido.kanschat@gmail.com>
Fri, 12 Feb 2010 17:27:40 +0000 (17:27 +0000)
git-svn-id: https://svn.dealii.org/trunk@20573 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-38/doc/intro.dox
deal.II/examples/step-38/step-38.cc

index 7eca8fa7bcd8a70a9dd34ee9679bf3a3cb64af2c..1f2de88b3ed72d7a02737b7fea5956f81d71f08c 100644 (file)
@@ -4,14 +4,11 @@
 <h3>Overview</h3>
 
 This example is devoted to the MeshWorker framework and the <em>discontinuous
-Galerkin method</em>, or in short: DG method. It solves the same problem as
-@ref step_12 "step-12" (see there for a description of the problem and
-discretization), but here we use the MeshWorker framework in order to save
-programming the cell/face loops that are often rather. The aim of the
-MeshWorker framework is to simplify this process, by putting the majority of
-the boring setup into a framework class and leaving to user code only things
-that are specific to the application.  We have tried to strip this example of
-peripheral information such that the structure becomes more clear.
+Galerkin method</em>, or in short: DG method. It includes the following topics.
+<ol>
+  <li> Discretization of the linear transport equation with the DG method.
+  <li> Assembling of the system matrix using the MeshWorker::loop().
+</ol>
 
 The particular concern of this program are the loops of DG methods. These turn
 out to be especially complex, primarily because for the face terms, we have to
@@ -25,3 +22,95 @@ to write the local integrators for your problem. Second, you select
 classes from the MeshWorker namespace and combine them to achieve your
 goal.
 
+<h3>Problem</h3>
+
+The model problem solved in this example is the linear advection equation
+<a name="step-12.transport-equation">@f[
+  \nabla\cdot \left({\mathbf \beta} u\right)=f  \qquad\mbox{in }\Omega,
+\qquad\qquad\qquad\mathrm{[transport-equation]}@f]</a>
+subject to the boundary conditions
+@f[
+u=g\quad\mbox{on }\Gamma_-,
+@f]
+on the inflow part $\Gamma_-$ of the boundary $\Gamma=\partial\Omega$
+of the domain.  Here, ${\mathbf \beta}={\mathbf \beta}({\bf x})$ denotes a
+vector field, $f$ a source function, $u$ the (scalar) solution
+function, $g$ a boundary value function,
+@f[
+\Gamma_-:=\{{\bf x}\in\Gamma, {\mathbf \beta}({\bf x})\cdot{\bf n}({\bf x})<0\}
+@f]
+the inflow part of the boundary of the domain and ${\bf n}$ denotes
+the unit outward normal to the boundary $\Gamma$. Equation
+<a href="#step-12.transport-equation">[transport-equation]</a> is the conservative version of the
+transport equation already considered in step 9 of this tutorial.
+
+In particular, we consider problem <a href="#step-12.transport-equation">[transport-equation]</a> on
+$\Omega=[0,1]^2$ with ${\mathbf \beta}=\frac{1}{|x|}(-x_2, x_1)$
+representing a circular counterclockwise flow field, $f=0$ and $g=1$
+on ${\bf x}\in\Gamma_-^1:=[0,0.5]\times\{0\}$ and $g=0$ on ${\bf x}\in
+\Gamma_-\setminus \Gamma_-^1$.
+
+
+<h3>Discretization</h3>
+
+For deriving the DG
+discretization we start with a variational, mesh-dependent
+formulation of the problem,
+@f[
+  \sum_\kappa\left\{-\beta u,\nabla v)_\kappa+(u^+ \beta\cdot{\bf n}, v)_{\partial\kappa}\right\}=(f,v)_\Omega,
+@f]
+
+that originates from <a
+href="#step-12.transport-equation">[transport-equation]</a> by
+multiplication with a test function $v$ and integration by parts on
+each cell $\kappa$ of the triangulation. Here $(\cdot, \cdot)_\kappa$
+and $(\cdot, \cdot)_{\partial\kappa}$ denote the
+<i>L<sup>2</sup></i>-inner products on the cell $\kappa$ and the
+boundary $\partial\kappa$ of the cell, respectively. $u^+$ is the
+value of <i>u</i> taken from the upwind cell with respect to $\beta$
+of the face, that is, the cell $\beta$ points away from. To discretize
+the problem, the functions $u$ and $v$ are replaced by discrete
+functions $u_h$ and $v_h$ that in the case of discontinuous Galerkin
+methods belong to the space $V_h$ of discontinuous piecewise
+polynomial functions of some degree $p$.
+
+Hence, the discontinuous Galerkin
+scheme for the <a href="#step-12.transport-equation">[transport-equation]</a> is given
+by: find $u_h\in V_h$ such that for all $v_h\in V_h$ following
+equation holds:
+<a name="step-12.dg-transport1">@f[
+  \sum_\kappa\left\{-(u_h,{\mathbf \beta}\cdot\nabla v_h)_\kappa
+  +({\mathbf \beta}\cdot{\bf n}\, u_h, v_h)_{\partial\kappa_+}
+  +({\mathbf \beta}\cdot{\bf n}\, u_h^-, v_h)_{\partial\kappa_-\setminus\Gamma}\right\}
+  =(f,v_h)_\Omega-({\mathbf \beta}\cdot{\bf n}\, g, v_h)_{\Gamma_-},
+\qquad\qquad\qquad\mathrm{[dg-transport1]}@f]</a>
+where $\partial\kappa_-:=\{{\bf x}\in\partial\kappa,
+{\mathbf \beta}({\bf x})\cdot{\bf n}({\bf x})<0\}$ denotes the inflow boundary
+and $\partial\kappa_+=\partial\kappa\setminus \partial \kappa_-$ the
+outflow part of cell $\kappa$. Below, this equation will be referred
+to as <em>first version</em> of the DG method. We note that after a
+second integration by parts, we obtain: find $u_h\in V_h$ such that
+@f[
+  \sum_\kappa\left\{(\nabla\cdot\{{\mathbf \beta} u_h\},v_h)_\kappa
+  -({\mathbf \beta}\cdot{\bf n} [u_h], v_h)_{\partial\kappa_-}\right\}
+  =(f,v_h)_\Omega, \quad\forall v_h\in V_h,
+@f]
+where $[u_h]=u_h^+-u_h^-$ denotes the jump of the discrete function
+between two neighboring cells and is defined to be $[u_h]=u_h^+-g$ on
+the boundary of the domain. This is the discontinuous Galerkin scheme
+for the transport equation given in its original notation.
+Nevertheless, we will base the implementation of the scheme on the
+form given by <a href="#step-12.dg-general1">[dg-general1]</a> and <a href="#step-12.upwind-flux">[upwind-flux]</a>,
+or <a href="#step-12.dg-transport1">[dg-transport1]</a>, respectively.
+
+Finally, we rewrite <a href="#step-12.dg-general1">[dg-general1]</a> in terms of a summation over all
+faces where each face $e=\partial \kappa\cap\partial \kappa'$
+between two neighboring cells $\kappa$ and $\kappa'$ occurs twice, obtaining
+
+@f[
+  -\sum_\kappa(u_h,{\mathbf \beta}\cdot\nabla v_h)_\kappa
+  +\sum_{E\in\mathbb E_h^i} (u_h^-, \beta\cdot[v_h\mathbf n])_{E}
+  =(f,v_h)_\Omega-(g, \beta\cdot\mathbf n v_h)_{\Gamma_-}.
+@f]
+
+In this form, we need to implement a 
index 9d7a1ad814c6c18461f35cb1953ec80712491332..21935f5fc6e258ea566ce23482afc4ac38df7842 100644 (file)
 /*    further information on this license.                        */
 
                                 // The first few files have already
-                                // been covered in step-12
+                                // been covered in previous examples
                                 // and will thus not be further
                                 // commented on:
 #include <base/quadrature_lib.h>
 #include <base/function.h>
 #include <lac/vector.h>
+#include <lac/compressed_sparsity_pattern.h>
 #include <lac/sparse_matrix.h>
 #include <grid/tria.h>
 #include <grid/grid_generator.h>
 #include <dofs/dof_tools.h>
 #include <numerics/data_out.h>
 #include <fe/mapping_q1.h>
+                                // Here the discontinuous finite
+                                // elements are defined. They are
+                                // used in the same way as all other
+                                // finite elements, though -- as you
+                                // have seen in previous tutorial
+                                // programs -- there isn't much user
+                                // interaction with finite element
+                                // classes at all: the are passed to
+                                // <code>DoFHandler</code> and <code>FEValues</code>
+                                // objects, and that is about it.
 #include <fe/fe_dgq.h>
+                                // We are going to use the simplest
+                                // possible solver, called Richardson
+                                // iteration, that represents a
+                                // simple defect correction. This, in
+                                // combination with a block SSOR
+                                // preconditioner (defined in
+                                // precondition_block.h), that uses
+                                // the special block matrix structure
+                                // of system matrices arising from DG
+                                // discretizations.
 #include <lac/solver_richardson.h>
 #include <lac/precondition_block.h>
+                                // We are going to use gradients as
+                                // refinement indicator.
 #include <numerics/derivative_approximation.h>
-#include <base/timer.h>
 
                                 // Here come the new include files
                                 // for using the MeshWorker framework:
 #include <numerics/mesh_worker_info.h>
 #include <numerics/mesh_worker_loop.h>
 
+                                // Like in all programs, we finish
+                                // this section by including the
+                                // needed C++ headers and declaring
+                                // we want to use objects in the
+                                // dealii namespace without prefix.
 #include <iostream>
 #include <fstream>
 
-                                // The last step is as in all
-                                // previous programs:
 using namespace dealii;
 
                                 // @sect3{Equation data}
                                 //
-                                // First, we need to describe the
-                                // coefficients in the equation. Here, this
-                                // concerns the boundary values, which we
-                                // choose in the same way as for step-12:
+                                // First, we define a class
+                                // describing the inhomogeneous
+                                // boundary data. Since only its
+                                // values are used, we implement
+                                // value_list(), but leave all other
+                                // functions of Function undefined.
 template <int dim>
 class BoundaryValues:  public Function<dim>
 {
@@ -89,27 +116,29 @@ void BoundaryValues<dim>::value_list(const std::vector<Point<dim> > &points,
        values[i]=0.;
     }
 }
-
-
-                                // @sect3{Integrating cell and face matrices}
-                                // @sect3{Class: DGMethod}
+                                // @sect3{Class: Step12}
                                 //
-                                // After these preparations, we
-                                // proceed with the main part of this
-                                // program. The main class, here
-                                // called <code>DGMethod</code> is basically
-                                // the main class of step-6. One of
-                                // the differences is that there's no
-                                // ConstraintMatrix object. This is,
+                                // After this preparations, we
+                                // proceed with the main class of
+                                // this program,
+                                // called Step12. It is basically
+                                // the main class of step-6. We do
+                                // not have a ConstraintMatrix,
                                 // because there are no hanging node
                                 // constraints in DG discretizations.
+
+                                // Major differences will only come
+                                // up in the implementation of the
+                                // assemble functions, since here, we
+                                // not only need to cover the flux
+                                // integrals over faces, we also use
+                                // the MeshWorker interface to
+                                // simplify the loops involved.
 template <int dim>
-class DGMethod
+class Step12
 {
   public:
-    DGMethod ();
-    ~DGMethod ();
-
+    Step12 ();
     void run ();
 
   private:
@@ -134,22 +163,19 @@ class DGMethod
     FE_DGQ<dim>          fe;
     DoFHandler<dim>      dof_handler;
 
+                                    // The next four members
+                                    // represent the linear system to
+                                    // be solved. #system_matrix and
+                                    // #right_hand_side are generated
+                                    // by assemble_system(), the
+                                    // #solution is computed in
+                                    // solve(). The #sparsity_pattern
+                                    // is used to determine the
+                                    // location of nonzero elements
+                                    // in #system_matrix.
     SparsityPattern      sparsity_pattern;
     SparseMatrix<double> system_matrix;
-
-                                    // In step-12 we had two solution vectors
-                                    // that stored the solutions to the
-                                    // problems corresponding to the two
-                                    // different assembling routines
-                                    // <code>assemble_system1</code> and
-                                    // <code>assemble_system2</code>. In this
-                                    // program, the goal is only to show the
-                                    // MeshWorker framework, so we only
-                                    // assemble the system in one of the two
-                                    // ways, and consequently we have only
-                                    // one solution vector along with the
-                                    // single <code>assemble_system</code>
-                                    // function declared above:
+    
     Vector<double>       solution;
     Vector<double>       right_hand_side;
 
@@ -166,10 +192,11 @@ class DGMethod
                                     // then work on intermediate
                                     // objects for which first, we
                                     // here define typedefs to the
-                                    // two info objects handed to the
+                                    // info objects handed to the
                                     // local integration functions in
                                     // order to make our life easier
                                     // below.
+    typedef MeshWorker::DoFInfo<dim> DoFInfo;
     typedef typename MeshWorker::IntegrationWorker<dim>::CellInfo CellInfo;
     typedef typename MeshWorker::IntegrationWorker<dim>::FaceInfo FaceInfo;
 
@@ -201,22 +228,18 @@ class DGMethod
                                     // types of arguments, but have
                                     // in fact other arguments
                                     // already bound.
-    static void integrate_cell_term (MeshWorker::DoFInfo<dim>& dinfo, CellInfo& info);
-    static void integrate_boundary_term (MeshWorker::DoFInfo<dim>& dinfo, FaceInfo& info);
-    static void integrate_face_term (MeshWorker::DoFInfo<dim>& dinfo1,
-                                    MeshWorker::DoFInfo<dim>& dinfo2, FaceInfo& info1,
-                                    FaceInfo& info2);
+    static void integrate_cell_term (DoFInfo& dinfo, CellInfo& info);
+    static void integrate_boundary_term (DoFInfo& dinfo, FaceInfo& info);
+    static void integrate_face_term (DoFInfo& dinfo1, DoFInfo& dinfo2,
+                                    FaceInfo& info1, FaceInfo& info2);
 };
 
 
-                                                // We start with the
-                                                // constructor. This is the
-                                                // place to change the
-                                                // polynomial degree of the
-                                                // finite element shape
-                                                // functions.
+                                // We start with the constructor. The
+                                // 1 in the constructor call of #fe
+                                // is the polynomial degree.
 template <int dim>
-DGMethod<dim>::DGMethod ()
+Step12<dim>::Step12 ()
                :
                 fe (1),
                dof_handler (triangulation)
@@ -224,49 +247,37 @@ DGMethod<dim>::DGMethod ()
 
 
 template <int dim>
-DGMethod<dim>::~DGMethod ()
+void Step12<dim>::setup_system ()
 {
-  dof_handler.clear ();
-}
-
-
                                 // In the function that sets up the usual
                                 // finite element data structures, we first
                                 // need to distribute the DoFs.
-template <int dim>
-void DGMethod<dim>::setup_system ()
-{
   dof_handler.distribute_dofs (fe);
 
-                                  // The DoFs of a cell are coupled with all
-                                  // DoFs of all neighboring cells, along
-                                  // with all of its siblings on the current
-                                  // cell.  Therefore the maximum number of
-                                  // matrix entries per row is needed when
-                                  // all neighbors of a cell are once more
-                                  // refined than the cell under
-                                  // consideration.
-  sparsity_pattern.reinit (dof_handler.n_dofs(),
-                          dof_handler.n_dofs(),
-                          (GeometryInfo<dim>::faces_per_cell *
-                           GeometryInfo<dim>::max_children_per_face
-                           +
-                           1)*fe.dofs_per_cell);
-
+                                  // We start by generating the
+                                  // sparsity pattern. To this end,
+                                  // we first fill an intermediate
+                                  // object of type
+                                  // CompressedSparsityPattern with
+                                  // the couplings appearing in the
+                                  // system. After building the
+                                  // pattern, this object is copied
+                                  // to #sparsity_pattern and can be
+                                  // discarded.
+  
                                   // To build the sparsity pattern for DG
                                   // discretizations, we can call the
                                   // function analogue to
                                   // DoFTools::make_sparsity_pattern, which
                                   // is called
                                   // DoFTools::make_flux_sparsity_pattern:
-  DoFTools::make_flux_sparsity_pattern (dof_handler, sparsity_pattern);
-
-                                  // All following function calls are
-                                  // already known.
-  sparsity_pattern.compress();
+  CompressedSparsityPattern c_sparsity(dof_handler.n_dofs());
+  DoFTools::make_flux_sparsity_pattern (dof_handler, c_sparsity);
+  sparsity_pattern.copy_from(c_sparsity);
 
+                                  // Finally, we set up the structure
+                                  // of all components of the linear system.
   system_matrix.reinit (sparsity_pattern);
-
   solution.reinit (dof_handler.n_dofs());
   right_hand_side.reinit (dof_handler.n_dofs());
 }
@@ -278,11 +289,11 @@ void DGMethod<dim>::setup_system ()
                                 // loops over cells and faces, we leave all
                                 // this to the MeshWorker framework. In order
                                 // to do so, we just have to define local
-                                // integration objects and use one of the
+                                // integration functions and use one of the
                                 // classes in namespace MeshWorker::Assembler
                                 // to build the global system.
 template <int dim>
-void DGMethod<dim>::assemble_system ()
+void Step12<dim>::assemble_system ()
 {
                                   // This is the magic object, which
                                   // knows everything about the data
@@ -299,36 +310,6 @@ void DGMethod<dim>::assemble_system ()
                                   // object distributes these into
                                   // the global sparse matrix and the
                                   // right hand side vector.
-                                  //
-                                  // MeshWorker::AssemblingIntegrator
-                                  // is not all that clever by
-                                  // itself, but its capabilities are
-                                  // provided the arguments provided
-                                  // to the constructor and by its
-                                  // second template argument. By
-                                  // exchanging
-                                  // MeshWorker::Assembler::SystemSimple,
-                                  // we could for instance assemble a
-                                  // BlockMatrix or just a Vector
-                                  // instead.
-                                  //
-                                  // As noted in the discussion when
-                                  // declaring the local integration
-                                  // functions in the class
-                                  // declaration, the arguments
-                                  // expected by the assembling
-                                  // integrator class are not
-                                  // actually function
-                                  // pointers. Rather, they are
-                                  // objects that can be called like
-                                  // functions with a certain number
-                                  // of arguments. Consequently, we
-                                  // could also pass objects with
-                                  // appropriate operator()
-                                  // implementations here, or the
-                                  // result of std::bind if the local
-                                  // integrators were, for example,
-                                  // non-static member functions.
   MeshWorker::IntegrationWorker<dim> integration_worker;
 
                                   // First, we initialize the
@@ -387,12 +368,30 @@ void DGMethod<dim>::assemble_system ()
                                   // (determined by the first
                                   // argument, which is an active
                                   // iterator).
+                                  //
+                                  // As noted in the discussion when
+                                  // declaring the local integration
+                                  // functions in the class
+                                  // declaration, the arguments
+                                  // expected by the assembling
+                                  // integrator class are not
+                                  // actually function
+                                  // pointers. Rather, they are
+                                  // objects that can be called like
+                                  // functions with a certain number
+                                  // of arguments. Consequently, we
+                                  // could also pass objects with
+                                  // appropriate operator()
+                                  // implementations here, or the
+                                  // result of std::bind if the local
+                                  // integrators were, for example,
+                                  // non-static member functions.
   MeshWorker::integration_loop<CellInfo, FaceInfo, dim>
     (dof_handler.begin_active(), dof_handler.end(),
      info_box,
-     &DGMethod<dim>::integrate_cell_term,
-     &DGMethod<dim>::integrate_boundary_term,
-     &DGMethod<dim>::integrate_face_term,
+     &Step12<dim>::integrate_cell_term,
+     &Step12<dim>::integrate_boundary_term,
+     &Step12<dim>::integrate_face_term,
      assembler, true);
 }
 
@@ -415,7 +414,7 @@ void DGMethod<dim>::assemble_system ()
                                 // added soon).
 
 template <int dim>
-void DGMethod<dim>::integrate_cell_term (MeshWorker::DoFInfo<dim>& dinfo, CellInfo& info)
+void Step12<dim>::integrate_cell_term (DoFInfo& dinfo, CellInfo& info)
 {
                                   // First, let us retrieve some of
                                   // the objects used here from
@@ -461,7 +460,7 @@ void DGMethod<dim>::integrate_cell_term (MeshWorker::DoFInfo<dim>& dinfo, CellIn
                                 // FESubfaceValues, in order to get access to
                                 // normal vectors.
 template <int dim>
-void DGMethod<dim>::integrate_boundary_term (MeshWorker::DoFInfo<dim>& dinfo, FaceInfo& info)
+void Step12<dim>::integrate_boundary_term (DoFInfo& dinfo, FaceInfo& info)
 {
   const FEFaceValuesBase<dim>& fe_v = info.fe_values();
   FullMatrix<double>& local_matrix = dinfo.matrix(0).matrix;
@@ -507,10 +506,8 @@ void DGMethod<dim>::integrate_boundary_term (MeshWorker::DoFInfo<dim>& dinfo, Fa
                                 // for each cell and two for coupling
                                 // back and forth.
 template <int dim>
-void DGMethod<dim>::integrate_face_term (MeshWorker::DoFInfo<dim>& dinfo1,
-                                        MeshWorker::DoFInfo<dim>& dinfo2,
-                                        FaceInfo& info1,
-                                        FaceInfo& info2)
+void Step12<dim>::integrate_face_term (DoFInfo& dinfo1, DoFInfo& dinfo2,
+                                      FaceInfo& info1, FaceInfo& info2)
 {
                                   // For quadrature points, weights,
                                   // etc., we use the
@@ -628,7 +625,7 @@ void DGMethod<dim>::integrate_face_term (MeshWorker::DoFInfo<dim>& dinfo1,
                                 // PreconditionBlockSOR class with
                                 // relaxation=1) does a much better job.
 template <int dim>
-void DGMethod<dim>::solve (Vector<double> &solution)
+void Step12<dim>::solve (Vector<double> &solution)
 {
   SolverControl           solver_control (1000, 1e-12, false, false);
   SolverRichardson<>      solver (solver_control);
@@ -688,7 +685,7 @@ void DGMethod<dim>::solve (Vector<double> &solution)
                                 // (to be more precise, in $H^1_\beta$)
                                 // only.
 template <int dim>
-void DGMethod<dim>::refine_grid ()
+void Step12<dim>::refine_grid ()
 {
                                   // The <code>DerivativeApproximation</code>
                                   // class computes the gradients to
@@ -731,7 +728,7 @@ void DGMethod<dim>::refine_grid ()
                                 // in previous examples and will not
                                 // be further commented on.
 template <int dim>
-void DGMethod<dim>::output_results (const unsigned int cycle) const
+void Step12<dim>::output_results (const unsigned int cycle) const
 {
                                   // Write the grid in eps format.
   std::string filename = "grid-";
@@ -769,7 +766,7 @@ void DGMethod<dim>::output_results (const unsigned int cycle) const
                                 // The following <code>run</code> function is
                                 // similar to previous examples.
 template <int dim>
-void DGMethod<dim>::run ()
+void Step12<dim>::run ()
 {
   for (unsigned int cycle=0; cycle<6; ++cycle)
     {
@@ -809,7 +806,7 @@ int main ()
 {
   try
     {
-      DGMethod<2> dgmethod;
+      Step12<2> dgmethod;
       dgmethod.run ();
     }
   catch (std::exception &exc)

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.