* which are computed during the first invocation of vmult(). The algorithm
* invokes a conjugate gradient solver (i.e., Lanczos iteration) so symmetry
* and positive definiteness of the (preconditioned) matrix system are
- * requirements. The eigenvalue algorithm can be controlled by
+ * required. The eigenvalue algorithm can be controlled by
* PreconditionChebyshev::AdditionalData::eig_cg_n_iterations specifying how
* many iterations should be performed. The iterations are started from an
* initial vector that depends on the vector type. For the classes
* length of the vector, except for the very first entry that is zero,
* triggering high-frequency content again.
*
- * The computation of eigenvalues happens the first time one of the
- * vmult(), Tvmult(), step() or Tstep() functions is called. This is because
- * temporary vectors of the same layout as the source and destination vectors
- * are necessary for these computations and this information gets only
- * available through vmult().
+ * The computation of eigenvalues happens the first time one of the vmult(),
+ * Tvmult(), step() or Tstep() functions is called or when
+ * estimate_eigenvalues() is called directly. In the latter case, it is
+ * necessary to provide a temporary vector of the same layout as the source
+ * and destination vectors used during application of the preconditioner.
*
- * Due to the cost of the eigenvalue estimate in the first vmult(), this class
- * is most appropriate if it is applied repeatedly, e.g. in a smoother for a
- * geometric multigrid solver, that can in turn be used to solve several
- * linear systems.
+ * The estimates for minimum and maximum eigenvalue are taken from SolverCG
+ * (even if the solver did not converge in the requested number of
+ * iterations). Finally, the maximum eigenvalue is multiplied by a safety
+ * factor of 1.2.
+ *
+ * Due to the cost of the eigenvalue estimate, this class is most appropriate
+ * if it is applied repeatedly, e.g. in a smoother for a geometric multigrid
+ * solver, that can in turn be used to solve several linear systems.
*
* <h4>Bypassing the eigenvalue computation</h4>
*
n() const;
/**
- * Struct that contains information about the eigenvalue estimation performed
- * by this class.
+ * A struct that contains information about the eigenvalue estimation
+ * performed by the PreconditionChebychev class.
*/
struct EigenvalueInformation
{
/**
* Estimate for the smallest eigenvalue.
*/
- double min_eigenvalue;
+ double min_eigenvalue_estimate;
/**
* Estimate for the largest eigenvalue.
*/
- double max_eigenvalue;
+ double max_eigenvalue_estimate;
/**
* Number of CG iterations performed or 0.
*/
unsigned int cg_iterations;
/**
- * The degree (either as set or estimated).
+ * The degree of the Chebyshev polynomial (either as set using
+ * AdditionalData::degree or estimated as described there).
*/
unsigned int degree;
};
// read the eigenvalues from the attached eigenvalue tracker
if (eigenvalue_tracker.values.empty())
- info.min_eigenvalue = info.max_eigenvalue = 1.;
+ info.min_eigenvalue_estimate = info.max_eigenvalue_estimate = 1.;
else
{
- info.min_eigenvalue = eigenvalue_tracker.values.front();
+ info.min_eigenvalue_estimate = eigenvalue_tracker.values.front();
// include a safety factor since the CG method will in general not
// be converged
- info.max_eigenvalue = 1.2 * eigenvalue_tracker.values.back();
+ info.max_eigenvalue_estimate = 1.2 * eigenvalue_tracker.values.back();
}
info.cg_iterations = control.last_step();
}
else
{
- info.max_eigenvalue = data.max_eigenvalue;
- info.min_eigenvalue = data.max_eigenvalue / data.smoothing_range;
+ info.max_eigenvalue_estimate = data.max_eigenvalue;
+ info.min_eigenvalue_estimate = data.max_eigenvalue / data.smoothing_range;
}
- const double alpha =
- (data.smoothing_range > 1. ?
- info.max_eigenvalue / data.smoothing_range :
- std::min(0.9 * info.max_eigenvalue, info.min_eigenvalue));
+ const double alpha = (data.smoothing_range > 1. ?
+ info.max_eigenvalue_estimate / data.smoothing_range :
+ std::min(0.9 * info.max_eigenvalue_estimate,
+ info.min_eigenvalue_estimate));
// in case the user set the degree to invalid unsigned int, we have to
// determine the number of necessary iterations from the Chebyshev error
// R. S. Varga, Matrix iterative analysis, 2nd ed., Springer, 2009
if (data.degree == numbers::invalid_unsigned_int)
{
- const double actual_range = info.max_eigenvalue / alpha;
+ const double actual_range = info.max_eigenvalue_estimate / alpha;
const double sigma = (1. - std::sqrt(1. / actual_range)) /
(1. + std::sqrt(1. / actual_range));
const double eps = data.smoothing_range;
const_cast<
PreconditionChebyshev<MatrixType, VectorType, PreconditionerType> *>(this)
- ->delta = (info.max_eigenvalue - alpha) * 0.5;
+ ->delta = (info.max_eigenvalue_estimate - alpha) * 0.5;
const_cast<
PreconditionChebyshev<MatrixType, VectorType, PreconditionerType> *>(this)
- ->theta = (info.max_eigenvalue + alpha) * 0.5;
+ ->theta = (info.max_eigenvalue_estimate + alpha) * 0.5;
// We do not need the second temporary vector in case we have a
// DiagonalMatrix as preconditioner and use deal.II's own vectors