};
-/**
- * An alias for QTrapezoid available for historic reasons. This name is
- * deprecated.
- *
- * The class was originally named QTrapez, a poorly named choice since the
- * proper name of the quadrature formula
- * is "trapezoidal rule", or sometimes also called the "trapezoid rule". The
- * misnomer resulted from the fact that its original authors' poor English
- * language skills led them to translate the name incorrectly from the German
- * "Trapezregel".
- */
-template <int dim>
-using QTrapez DEAL_II_DEPRECATED = QTrapezoid<dim>;
-
-
-
/**
* The Milne rule for numerical quadrature formula. The Milne rule is a closed
* Newton-Cotes formula and is exact for polynomials of degree 5.
// find sub-quadrature
position = name.find('(');
const std::string subquadrature_name(name, 0, position);
- AssertThrow(subquadrature_name == "QTrapez" ||
- subquadrature_name == "QTrapezoid",
+ AssertThrow(subquadrature_name == "QTrapezoid",
ExcNotImplemented(
"Could not detect quadrature of name " +
subquadrature_name));
*
* @note The weights of the quadrature object are left unfilled and
* consequently the object cannot usefully be used for actually
- * computing integrals. This is in contrast to, for example, the QTrapez
+ * computing integrals. This is in contrast to, for example, the QTrapezoid
* class that correctly sets quadrature weights.
*/
template <int dim>
//
// In the co-dimension one case (meaning dim < spacedim) we have to fall
// back to a simple GridTools::affine_cell_approximation<dim>() which
- // requires 2^dim points, instead. Thus, initialize the QIteraded
+ // requires 2^dim points, instead. Thus, initialize the QIterated
// quadrature with no subdivisions.
std::vector<Point<dim>> unit_points =
- QIterated<dim>(QTrapez<1>(), (dim == spacedim ? 2 : 1)).get_points();
+ QIterated<dim>(QTrapezoid<1>(), (dim == spacedim ? 2 : 1)).get_points();
std::vector<Point<spacedim>> real_points(unit_points.size());
for (const auto &cell : triangulation.active_cell_iterators())
parallel::distributed::Triangulation<dim> tria(MPI_COMM_WORLD);
make_mesh(tria);
- FE_Q<dim> element(QIterated<1>(QTrapez<1>(), 3));
+ FE_Q<dim> element(QIterated<1>(QTrapezoid<1>(), 3));
DoFHandler<dim> dof(tria);
dof.distribute_dofs(element);
const std::vector<Point<dim>> evaluation_points =
dim == 3 ? QGauss<dim>(2).get_points() :
- QIterated<dim>(QTrapez<1>(), 3).get_points();
+ QIterated<dim>(QTrapezoid<1>(), 3).get_points();
deallog << "Evaluate in " << dim << "d with polynomial degree " << degree
<< std::endl;
const std::vector<Point<dim>> evaluation_points =
dim == 3 ? QGauss<dim>(2).get_points() :
- QIterated<dim>(QTrapez<1>(), 3).get_points();
+ QIterated<dim>(QTrapezoid<1>(), 3).get_points();
deallog << "Evaluate in " << dim << "d with polynomial degree " << degree
<< std::endl;
const std::vector<Point<dim>> evaluation_points =
dim == 3 ? QGauss<dim>(2).get_points() :
- QIterated<dim>(QTrapez<1>(), 3).get_points();
+ QIterated<dim>(QTrapezoid<1>(), 3).get_points();
deallog << "Evaluate in " << dim << "d with polynomial degree " << degree
<< std::endl;
const std::vector<Point<dim>> evaluation_points =
dim == 3 ? QGauss<dim>(2).get_points() :
- QIterated<dim>(QTrapez<1>(), 3).get_points();
+ QIterated<dim>(QTrapezoid<1>(), 3).get_points();
deallog << "Evaluate in " << dim << "d with polynomial degree " << degree
<< std::endl;
const std::vector<Point<dim>> evaluation_points =
dim == 3 ? QGauss<dim>(2).get_points() :
- QIterated<dim>(QTrapez<1>(), 3).get_points();
+ QIterated<dim>(QTrapezoid<1>(), 3).get_points();
deallog << "Evaluate in " << dim << "d with polynomial degree " << degree
<< std::endl;
const std::vector<Point<dim>> evaluation_points =
dim == 3 ? QGauss<dim>(2).get_points() :
- QIterated<dim>(QTrapez<1>(), 3).get_points();
+ QIterated<dim>(QTrapezoid<1>(), 3).get_points();
deallog << "Evaluate in " << dim << "d with polynomial degree " << degree
<< std::endl;