// into the global
// coordinate system. they
// are @p{A (1,c)} and @p{A
- // (1,b)} with @p{A} the
+ // (1,-b-2c)} with @p{A} the
// rotation matrix, since
// the tangentials in the
// coordinate system
// relative to the line are
- // @p{(1,c)} and @p{(1,b)}
+ // @p{(1,c)} and @p{(1,-b-2c)}
// at the two vertices,
// respectively. We then
// have to make sure by
coordinate_axis /= h;
const double alpha = std::atan2(coordinate_axis[1], coordinate_axis[0]);
- const double b = ((face_vertex_normals[0][1] * std::sin(alpha)
- +face_vertex_normals[0][0] * std::cos(alpha)) /
- (face_vertex_normals[0][1] * std::cos(alpha)
- -face_vertex_normals[0][0] * std::sin(alpha))),
- c = ((face_vertex_normals[1][1] * std::sin(alpha)
- +face_vertex_normals[1][0] * std::cos(alpha)) /
- (face_vertex_normals[1][1] * std::cos(alpha)
- -face_vertex_normals[1][0] * std::sin(alpha)));
+ const double c = -((face_vertex_normals[0][1] * std::sin(alpha)
+ +face_vertex_normals[0][0] * std::cos(alpha)) /
+ (face_vertex_normals[0][1] * std::cos(alpha)
+ -face_vertex_normals[0][0] * std::sin(alpha)));
+ const double b = ((face_vertex_normals[1][1] * std::sin(alpha)
+ +face_vertex_normals[1][0] * std::cos(alpha)) /
+ (face_vertex_normals[1][1] * std::cos(alpha)
+ -face_vertex_normals[1][0] * std::sin(alpha)))
+ -2*c;
+
// next evaluate the so
// determined cubic