#include <deal.II/lac/solver_gmres.h>
#include <deal.II/lac/precondition.h>
#include <deal.II/grid/tria.h>
-#include <deal.II/dofs/dof_handler.h>
#include <deal.II/grid/tria_accessor.h>
#include <deal.II/grid/grid_generator.h>
+#include <deal.II/grid/grid_refinement.h>
#include <deal.II/grid/tria_iterator.h>
#include <deal.II/grid/tria_boundary_lib.h>
+#include <deal.II/dofs/dof_handler.h>
#include <deal.II/dofs/dof_accessor.h>
#include <deal.II/dofs/dof_renumbering.h>
#include <deal.II/dofs/dof_tools.h>
#include <deal.II/fe/fe_system.h>
#include <deal.II/fe/fe_values.h>
#include <deal.II/numerics/vector_tools.h>
+#include <deal.II/numerics/error_estimator.h>
#include <deal.II/numerics/matrix_tools.h>
#include <deal.II/numerics/data_out.h>
-//! New include: output data on faces of a
-// triangulation
-#include <deal.II/numerics/data_out_faces.h>
-
-
//! New include: fe_face.h
// Explain that it implements fe on
// codim=1 surfaces of a geometric discretization
#include <deal.II/fe/fe_dgq.h>
#include <deal.II/fe/fe_face.h>
+//! New include: explain the chunk_xxx
#include <deal.II/lac/chunk_sparse_matrix.h>
-#include <deal.II/numerics/data_out_faces.h>
-
-namespace Step51
-{
- using namespace dealii;
-
- // @sect3{Equation data}
-
- // The structure of the analytic solution is the same as in step-7. There
- // are two exceptions. Firstly, we also create a solution for the 3d case,
- // and secondly, we take into account the convection velocity in the right
- // hand side that is variable in this case.
- template <int dim>
- class SolutionBase
- {
- protected:
- static const unsigned int n_source_centers = 3;
- static const Point<dim> source_centers[n_source_centers];
- static const double width;
- };
-
-
- template <>
- const Point<1>
- SolutionBase<1>::source_centers[SolutionBase<1>::n_source_centers]
- = { Point<1>(-1.0 / 3.0),
- Point<1>(0.0),
- Point<1>(+1.0 / 3.0)
- };
-
-
- template <>
- const Point<2>
- SolutionBase<2>::source_centers[SolutionBase<2>::n_source_centers]
- = { Point<2>(-0.5, +0.5),
- Point<2>(-0.5, -0.5),
- Point<2>(+0.5, -0.5)
- };
-
- template <>
- const Point<3>
- SolutionBase<3>::source_centers[SolutionBase<3>::n_source_centers]
- = { Point<3>(-0.5, +0.5, 0.25),
- Point<3>(-0.6, -0.5, -0.125),
- Point<3>(+0.5, -0.5, 0.5) };
-
- template <int dim>
- const double SolutionBase<dim>::width = 1./5.;
-
+//! New include: output data on faces of a
+// triangulation
+#include <deal.II/numerics/data_out_faces.h>
- template <int dim>
- class ConvectionVelocity : public TensorFunction<1,dim>
- {
- public:
- ConvectionVelocity() : TensorFunction<1,dim>() {}
+using namespace dealii;
- virtual Tensor<1,dim> value (const Point<dim> &p) const;
- };
+// @sect3{Equation data}
+// The structure of the analytic solution is the same as in step-7. There
+// are two exceptions. Firstly, we also create a solution for the 3d case,
+// and secondly, we take into account the convection velocity in the right
+// hand side that is variable in this case.
+template <int dim>
+class SolutionBase
+{
+protected:
+ static const unsigned int n_source_centers = 3;
+ static const Point<dim> source_centers[n_source_centers];
+ static const double width;
+};
- template <int dim>
- Tensor<1,dim>
- ConvectionVelocity<dim>::value(const Point<dim> &p) const
- {
- Tensor<1,dim> convection;
- switch (dim)
- {
- case 1:
- convection[0] = 1;
- break;
- case 2:
- convection[0] = p[1];
- convection[1] = -p[0];
- break;
- case 3:
- convection[0] = p[1];
- convection[1] = -p[0];
- convection[2] = 1;
- break;
- default:
- Assert(false, ExcNotImplemented());
- }
- return convection;
- }
+template <>
+const Point<1>
+SolutionBase<1>::source_centers[SolutionBase<1>::n_source_centers]
+= { Point<1>(-1.0 / 3.0),
+ Point<1>(0.0),
+ Point<1>(+1.0 / 3.0)
+};
- template <int dim>
- class Solution : public Function<dim>,
- protected SolutionBase<dim>
- {
- public:
- Solution () : Function<dim>() {}
+template <>
+const Point<2>
+SolutionBase<2>::source_centers[SolutionBase<2>::n_source_centers]
+= { Point<2>(-0.5, +0.5),
+ Point<2>(-0.5, -0.5),
+ Point<2>(+0.5, -0.5)
+};
- virtual double value (const Point<dim> &p,
- const unsigned int component = 0) const;
+template <>
+const Point<3>
+SolutionBase<3>::source_centers[SolutionBase<3>::n_source_centers]
+= { Point<3>(-0.5, +0.5, 0.25),
+ Point<3>(-0.6, -0.5, -0.125),
+ Point<3>(+0.5, -0.5, 0.5) };
- virtual Tensor<1,dim> gradient (const Point<dim> &p,
- const unsigned int component = 0) const;
- };
+template <int dim>
+const double SolutionBase<dim>::width = 1./5.;
- template <int dim>
- double Solution<dim>::value (const Point<dim> &p,
- const unsigned int) const
- {
- double return_value = 0;
- for (unsigned int i=0; i<this->n_source_centers; ++i)
- {
- const Point<dim> x_minus_xi = p - this->source_centers[i];
- return_value += std::exp(-x_minus_xi.square() /
- (this->width * this->width));
- }
+template <int dim>
+class ConvectionVelocity : public TensorFunction<1,dim>
+{
+public:
+ ConvectionVelocity() : TensorFunction<1,dim>() {}
- return return_value /
- Utilities::fixed_power<dim>(std::sqrt(2. * numbers::PI) * this->width);
- }
+ virtual Tensor<1,dim> value (const Point<dim> &p) const;
+};
- template <int dim>
- Tensor<1,dim> Solution<dim>::gradient (const Point<dim> &p,
- const unsigned int) const
- {
- Tensor<1,dim> return_value;
+template <int dim>
+Tensor<1,dim>
+ConvectionVelocity<dim>::value(const Point<dim> &p) const
+{
+ Tensor<1,dim> convection;
+ switch (dim)
+ {
+ case 1:
+ convection[0] = 1;
+ break;
+ case 2:
+ convection[0] = p[1];
+ convection[1] = -p[0];
+ break;
+ case 3:
+ convection[0] = p[1];
+ convection[1] = -p[0];
+ convection[2] = 1;
+ break;
+ default:
+ Assert(false, ExcNotImplemented());
+ }
+ return convection;
+}
- for (unsigned int i=0; i<this->n_source_centers; ++i)
- {
- const Point<dim> x_minus_xi = p - this->source_centers[i];
- return_value += (-2 / (this->width * this->width) *
- std::exp(-x_minus_xi.square() /
- (this->width * this->width)) *
- x_minus_xi);
- }
+template <int dim>
+class Solution : public Function<dim>,
+ protected SolutionBase<dim>
+{
+public:
+ Solution () : Function<dim>() {}
- return return_value / Utilities::fixed_power<dim>(std::sqrt(2 * numbers::PI) *
- this->width);
- }
+ virtual double value (const Point<dim> &p,
+ const unsigned int component = 0) const;
+ virtual Tensor<1,dim> gradient (const Point<dim> &p,
+ const unsigned int component = 0) const;
+};
- template <int dim>
- class SolutionAndGradient : public Function<dim>,
- protected SolutionBase<dim>
- {
- public:
- SolutionAndGradient () : Function<dim>(dim) {}
- virtual void vector_value (const Point<dim> &p,
- Vector<double> &v) const
+template <int dim>
+double Solution<dim>::value (const Point<dim> &p,
+ const unsigned int) const
+{
+ double return_value = 0;
+ for (unsigned int i=0; i<this->n_source_centers; ++i)
{
- AssertDimension(v.size(), dim+1);
- Solution<dim> solution;
- Tensor<1,dim> grad = solution.gradient(p);
- for (unsigned int d=0; d<dim; ++d)
- v[d] = -grad[d];
- v[dim] = solution.value(p);
+ const Point<dim> x_minus_xi = p - this->source_centers[i];
+ return_value += std::exp(-x_minus_xi.square() /
+ (this->width * this->width));
}
- };
+ return return_value /
+ Utilities::fixed_power<dim>(std::sqrt(2. * numbers::PI) * this->width);
+}
- template <int dim>
- class RightHandSide : public Function<dim>,
- protected SolutionBase<dim>
- {
- public:
- RightHandSide () : Function<dim>() {}
- virtual double value (const Point<dim> &p,
- const unsigned int component = 0) const;
+template <int dim>
+Tensor<1,dim> Solution<dim>::gradient (const Point<dim> &p,
+ const unsigned int) const
+{
+ Tensor<1,dim> return_value;
- private:
- const ConvectionVelocity<dim> convection_velocity;
- };
+ for (unsigned int i=0; i<this->n_source_centers; ++i)
+ {
+ const Point<dim> x_minus_xi = p - this->source_centers[i];
+ return_value += (-2 / (this->width * this->width) *
+ std::exp(-x_minus_xi.square() /
+ (this->width * this->width)) *
+ x_minus_xi);
+ }
- template <int dim>
- double RightHandSide<dim>::value (const Point<dim> &p,
- const unsigned int) const
- {
- Tensor<1,dim> convection = convection_velocity.value(p);
- double return_value = 0;
- for (unsigned int i=0; i<this->n_source_centers; ++i)
- {
- const Point<dim> x_minus_xi = p - this->source_centers[i];
-
- return_value +=
- ((2*dim - 2*convection*x_minus_xi - 4*x_minus_xi.square()/
- (this->width * this->width)) /
- (this->width * this->width) *
- std::exp(-x_minus_xi.square() /
- (this->width * this->width)));
- }
+ return return_value / Utilities::fixed_power<dim>(std::sqrt(2 * numbers::PI) *
+ this->width);
+}
- return return_value / Utilities::fixed_power<dim>(std::sqrt(2 * numbers::PI)
- * this->width);
- }
+template <int dim>
+class SolutionAndGradient : public Function<dim>,
+ protected SolutionBase<dim>
+{
+public:
+ SolutionAndGradient () : Function<dim>(dim) {}
- template <int dim>
- class HDG
+ virtual void vector_value (const Point<dim> &p,
+ Vector<double> &v) const
{
- public:
- enum RefinementMode
- {
- global_refinement, adaptive_refinement
- };
-
- HDG (const unsigned int degree,
- const RefinementMode refinement_mode);
- void run ();
-
- private:
- void setup_system ();
- void assemble_system (const bool reconstruct_trace = false);
- void solve ();
- void postprocess ();
- void refine_mesh ();
- void output_results (const unsigned int cycle);
-
- Triangulation<dim> triangulation;
-
- const MappingQ<dim> mapping;
+ AssertDimension(v.size(), dim+1);
+ Solution<dim> solution;
+ Tensor<1,dim> grad = solution.gradient(p);
+ for (unsigned int d=0; d<dim; ++d)
+ v[d] = -grad[d];
+ v[dim] = solution.value(p);
+ }
+};
- // local (element interior) solutions
- FESystem<dim> fe_local;
- DoFHandler<dim> dof_handler_local;
- // global (trace/skeleton) solution
- // Note that FE_FaceQ<dim> represents
- // finite element data on the faces/edges
- // of our triangulation
- FE_FaceQ<dim> fe;
- DoFHandler<dim> dof_handler;
- // post-processed solution
- FE_DGQ<dim> fe_u_post;
- DoFHandler<dim> dof_handler_u_post;
-
- // Dirichlet BCs are strongly enforced
- // on the "skeleton" solution
- ConstraintMatrix constraints;
-
-
- // Comment on "chunk" here.
- // First, set up objects for the global
- // solution
- ChunkSparsityPattern sparsity_pattern;
- ChunkSparseMatrix<double> system_matrix;
+template <int dim>
+class RightHandSide : public Function<dim>,
+ protected SolutionBase<dim>
+{
+public:
+ RightHandSide () : Function<dim>() {}
- Vector<double> solution;
- Vector<double> system_rhs;
+ virtual double value (const Point<dim> &p,
+ const unsigned int component = 0) const;
- // Local solution values
- Vector<double> solution_local;
-
- // HDG solutions can be post-processed
- // to gain one order of accuracy.
- // <code>solution_u_post</code> will be
- // our post-processed DG solution on the
- // interior of cells represented by a
- // DG solution of order (degree+1)
- Vector<double> solution_u_post;
+private:
+ const ConvectionVelocity<dim> convection_velocity;
+};
- // Same as step-7:
- const RefinementMode refinement_mode;
- ConvergenceTable convergence_table;
- };
+template <int dim>
+double RightHandSide<dim>::value (const Point<dim> &p,
+ const unsigned int) const
+{
+ Tensor<1,dim> convection = convection_velocity.value(p);
+ double return_value = 0;
+ for (unsigned int i=0; i<this->n_source_centers; ++i)
+ {
+ const Point<dim> x_minus_xi = p - this->source_centers[i];
+
+ return_value +=
+ ((2*dim - 2*convection*x_minus_xi - 4*x_minus_xi.square()/
+ (this->width * this->width)) /
+ (this->width * this->width) *
+ std::exp(-x_minus_xi.square() /
+ (this->width * this->width)));
+ }
+ return return_value / Utilities::fixed_power<dim>(std::sqrt(2 * numbers::PI)
+ * this->width);
+}
- template <int dim>
- HDG<dim>::HDG (const unsigned int degree,
- const RefinementMode refinement_mode) :
- mapping (1),
- fe_local (FE_DGQ<dim>(degree), dim,
- FE_DGQ<dim>(degree), 1),
- dof_handler_local (triangulation),
- fe (degree),
- dof_handler (triangulation),
- fe_u_post (degree+1),
- dof_handler_u_post (triangulation),
- refinement_mode (refinement_mode)
- {}
+template <int dim>
+class Step51
+{
+public:
+ enum RefinementMode
+ {
+ global_refinement, adaptive_refinement
+ };
+ Step51 (const unsigned int degree,
+ const RefinementMode refinement_mode);
+ void run ();
+
+private:
+ void setup_system ();
+ void assemble_system (const bool reconstruct_trace = false);
+ void solve ();
+ void postprocess ();
+ void refine_grid (const unsigned int cylce);
+ void output_results (const unsigned int cycle);
+
+ Triangulation<dim> triangulation;
+
+ const MappingQ<dim> mapping;
+
+ // local (element interior) solutions
+ FESystem<dim> fe_local;
+ DoFHandler<dim> dof_handler_local;
+
+ // global (trace/skeleton) solution
+ // Note that FE_FaceQ<dim> represents
+ // finite element data on the faces/edges
+ // of our triangulation
+ FE_FaceQ<dim> fe;
+ DoFHandler<dim> dof_handler;
+
+ // post-processed solution
+ FE_DGQ<dim> fe_u_post;
+ DoFHandler<dim> dof_handler_u_post;
+
+ // Dirichlet BCs are strongly enforced
+ // on the "skeleton" solution
+ ConstraintMatrix constraints;
+
+ // Comment on chunk.
+ ChunkSparsityPattern sparsity_pattern;
+ ChunkSparseMatrix<double> system_matrix;
+
+ // Global/skeleton solution/rhs
+ Vector<double> solution;
+ Vector<double> system_rhs;
+
+ // Local elementwise solution
+ Vector<double> solution_local;
+
+ // HDG solutions can be post-processed
+ // to gain one order of accuracy.
+ // <code>solution_u_post</code> will be
+ // our post-processed DG solution on the
+ // interior of cells represented by a
+ // DG solution of order (degree+1)
+ Vector<double> solution_u_post;
+
+ // Same as step-7:
+ const RefinementMode refinement_mode;
+
+ ConvergenceTable convergence_table;
+};
+
+
+
+template <int dim>
+Step51<dim>::Step51 (const unsigned int degree,
+ const RefinementMode refinement_mode) :
+ mapping (3),
+ fe_local (FE_DGQ<dim>(degree), dim,
+ FE_DGQ<dim>(degree), 1),
+ dof_handler_local (triangulation),
+ fe (degree),
+ dof_handler (triangulation),
+ fe_u_post (degree+1),
+ dof_handler_u_post (triangulation),
+ refinement_mode (refinement_mode)
+{}
+
+
+
+template <int dim>
+void
+Step51<dim>::setup_system ()
+{
+ dof_handler_local.distribute_dofs(fe_local);
+ dof_handler.distribute_dofs(fe);
+ dof_handler_u_post.distribute_dofs(fe_u_post);
+
+ std::cout << " Number of degrees of freedom: "
+ << dof_handler.n_dofs()
+ << std::endl;
+
+ solution.reinit (dof_handler.n_dofs());
+ system_rhs.reinit (dof_handler.n_dofs());
+
+ solution_local.reinit (dof_handler_local.n_dofs());
+ solution_u_post.reinit (dof_handler_u_post.n_dofs());
+
+ constraints.clear ();
+ DoFTools::make_hanging_node_constraints (dof_handler, constraints);
+ typename FunctionMap<dim>::type boundary_functions;
+ Solution<dim> solution;
+ boundary_functions[0] = &solution;
+ VectorTools::project_boundary_values (mapping, dof_handler,
+ boundary_functions,
+ QGauss<dim-1>(fe.degree+1),
+ constraints);
+ constraints.close ();
- template <int dim>
- void
- HDG<dim>::setup_system ()
{
- dof_handler_local.distribute_dofs(fe_local);
- dof_handler.distribute_dofs(fe);
- dof_handler_u_post.distribute_dofs(fe_u_post);
+ CompressedSimpleSparsityPattern csp (dof_handler.n_dofs());
+ DoFTools::make_sparsity_pattern (dof_handler, csp,
+ constraints, false);
+ sparsity_pattern.copy_from(csp, fe.dofs_per_face);
+ }
+ system_matrix.reinit (sparsity_pattern);
+}
- std::cout << " Number of degrees of freedom: "
- << dof_handler.n_dofs()
- << std::endl;
- solution.reinit (dof_handler.n_dofs());
- system_rhs.reinit (dof_handler.n_dofs());
- solution_local.reinit (dof_handler_local.n_dofs());
- solution_u_post.reinit (dof_handler_u_post.n_dofs());
+template <int dim>
+void
+Step51<dim>::assemble_system (const bool trace_reconstruct)
+{
+ QGauss<dim> quadrature_formula(fe.degree+1);
+ QGauss<dim-1> face_quadrature_formula(fe.degree+1);
+
+ FEValues<dim> fe_values_local (mapping, fe_local, quadrature_formula,
+ update_values | update_gradients |
+ update_JxW_values | update_quadrature_points);
+ FEFaceValues<dim> fe_face_values (mapping, fe, face_quadrature_formula,
+ update_values | update_normal_vectors |
+ update_quadrature_points |
+ update_JxW_values);
+ FEFaceValues<dim> fe_face_values_local (mapping, fe_local,
+ face_quadrature_formula,
+ update_values);
+
+ const unsigned int n_q_points = quadrature_formula.size();
+ const unsigned int n_face_q_points = face_quadrature_formula.size();
+
+ const unsigned int dofs_per_cell = fe.dofs_per_cell;
+ const unsigned int loc_dofs_per_cell = fe_local.dofs_per_cell;
+
+ FullMatrix<double> ll_matrix (loc_dofs_per_cell, loc_dofs_per_cell);
+ FullMatrix<double> lf_matrix (loc_dofs_per_cell, dofs_per_cell);
+ FullMatrix<double> fl_matrix (dofs_per_cell, loc_dofs_per_cell);
+ FullMatrix<double> tmp_matrix (dofs_per_cell, loc_dofs_per_cell);
+ FullMatrix<double> ff_matrix (dofs_per_cell, dofs_per_cell);
+ Vector<double> l_rhs (loc_dofs_per_cell);
+ Vector<double> f_rhs (dofs_per_cell);
+ Vector<double> tmp_rhs (loc_dofs_per_cell);
+
+ std::vector<types::global_dof_index> dof_indices (dofs_per_cell);
+ std::vector<types::global_dof_index> loc_dof_indices (loc_dofs_per_cell);
+
+ std::vector<Tensor<1,dim> > q_phi (loc_dofs_per_cell);
+ std::vector<double> q_phi_div (loc_dofs_per_cell);
+ std::vector<double> u_phi (loc_dofs_per_cell);
+ std::vector<Tensor<1,dim> > u_phi_grad (loc_dofs_per_cell);
+ std::vector<double> tr_phi (dofs_per_cell);
+
+ std::vector<double> trace_values(n_face_q_points);
+
+ // Choose stabilization parameter to be 5 * diffusion = 5
+ const double tau_stab_diffusion = 5.;
+
+ ConvectionVelocity<dim> convection_velocity;
+ RightHandSide<dim> right_hand_side;
+ const Solution<dim> exact_solution;
+
+ const FEValuesExtractors::Vector fluxes (0);
+ const FEValuesExtractors::Scalar scalar (dim);
+
+ std::vector<std::vector<unsigned int> >
+ fe_local_support_on_face(GeometryInfo<dim>::faces_per_cell);
+ for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
+ for (unsigned int i=0; i<loc_dofs_per_cell; ++i)
+ if (fe_local.has_support_on_face(i,face))
+ fe_local_support_on_face[face].push_back(i);
+ std::vector<std::vector<unsigned int> >
+ fe_support_on_face(GeometryInfo<dim>::faces_per_cell);
+ for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
+ for (unsigned int i=0; i<dofs_per_cell; ++i)
+ if (fe.has_support_on_face(i,face))
+ fe_support_on_face[face].push_back(i);
+
+ typename DoFHandler<dim>::active_cell_iterator
+ cell = dof_handler.begin_active(),
+ loc_cell = dof_handler_local.begin_active(),
+ endc = dof_handler.end();
+ for (; cell!=endc; ++cell, ++loc_cell)
+ {
+ ll_matrix = 0;
+ l_rhs = 0;
+ if (!trace_reconstruct)
+ {
+ lf_matrix = 0;
+ fl_matrix = 0;
+ ff_matrix = 0;
+ f_rhs = 0;
+ }
+ fe_values_local.reinit (loc_cell);
- constraints.clear ();
- DoFTools::make_hanging_node_constraints (dof_handler, constraints);
- std::map<unsigned int,double> boundary_values;
- typename FunctionMap<dim>::type boundary_functions;
- Solution<dim> solution;
- boundary_functions[0] = &solution;
- VectorTools::project_boundary_values (mapping, dof_handler,
- boundary_functions,
- QGauss<dim-1>(fe.degree+1),
- boundary_values);
- for (std::map<unsigned int,double>::iterator it = boundary_values.begin();
- it != boundary_values.end(); ++it)
- if (constraints.is_constrained(it->first) == false)
+ for (unsigned int q=0; q<n_q_points; ++q)
{
- constraints.add_line(it->first);
- constraints.set_inhomogeneity(it->first, it->second);
+ const double rhs_value
+ = right_hand_side.value(fe_values_local.quadrature_point(q));
+ const Tensor<1,dim> convection
+ = convection_velocity.value(fe_values_local.quadrature_point(q));
+ const double JxW = fe_values_local.JxW(q);
+ for (unsigned int k=0; k<loc_dofs_per_cell; ++k)
+ {
+ q_phi[k] = fe_values_local[fluxes].value(k,q);
+ q_phi_div[k] = fe_values_local[fluxes].divergence(k,q);
+ u_phi[k] = fe_values_local[scalar].value(k,q);
+ u_phi_grad[k] = fe_values_local[scalar].gradient(k,q);
+ }
+ for (unsigned int i=0; i<loc_dofs_per_cell; ++i)
+ {
+ for (unsigned int j=0; j<loc_dofs_per_cell; ++j)
+ ll_matrix(i,j) += (
+ q_phi[i] * q_phi[j]
+ -
+ q_phi_div[i] * u_phi[j]
+ +
+ u_phi[i] * q_phi_div[j]
+ -
+ (u_phi_grad[i] * convection) * u_phi[j]
+ ) * JxW;
+ l_rhs(i) += u_phi[i] * rhs_value * JxW;
+ }
}
- constraints.close ();
- {
- CompressedSimpleSparsityPattern csp (dof_handler.n_dofs());
- DoFTools::make_sparsity_pattern (dof_handler, csp,
- constraints, false);
- sparsity_pattern.copy_from(csp, fe.dofs_per_face);
- }
- system_matrix.reinit (sparsity_pattern);
- }
+ for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
+ {
+ fe_face_values_local.reinit(loc_cell, face);
+ fe_face_values.reinit(cell, face);
+ if (trace_reconstruct)
+ fe_face_values.get_function_values (solution, trace_values);
+ for (unsigned int q=0; q<n_face_q_points; ++q)
+ {
+ const double JxW = fe_face_values.JxW(q);
+ const Point<dim> normal = fe_face_values.normal_vector(q);
+ const Tensor<1,dim> convection
+ = convection_velocity.value(fe_face_values.quadrature_point(q));
+ const double tau_stab = (tau_stab_diffusion +
+ std::abs(convection * normal));
+
+ for (unsigned int k=0; k<fe_local_support_on_face[face].size(); ++k)
+ {
+ const unsigned int kk=fe_local_support_on_face[face][k];
+ q_phi[k] = fe_face_values_local[fluxes].value(kk,q);
+ u_phi[k] = fe_face_values_local[scalar].value(kk,q);
+ }
+ if (!trace_reconstruct)
+ {
+ for (unsigned int k=0; k<fe_support_on_face[face].size(); ++k)
+ tr_phi[k] =
+ fe_face_values.shape_value(fe_support_on_face[face][k],q);
+ for (unsigned int i=0; i<fe_local_support_on_face[face].size(); ++i)
+ for (unsigned int j=0; j<fe_support_on_face[face].size(); ++j)
+ {
+ const unsigned int ii=fe_local_support_on_face[face][i];
+ const unsigned int jj=fe_support_on_face[face][j];
+ lf_matrix(ii,jj) += (
+ (q_phi[i] * normal
+ +
+ (convection * normal -
+ tau_stab) * u_phi[i])
+ * tr_phi[j]
+ ) * JxW;
+ fl_matrix(jj,ii) -= (
+ (q_phi[i] * normal
+ +
+ tau_stab * u_phi[i])
+ * tr_phi[j]
+ ) * JxW;
+ }
+ for (unsigned int i=0; i<fe_support_on_face[face].size(); ++i)
+ for (unsigned int j=0; j<fe_support_on_face[face].size(); ++j)
+ {
+ const unsigned int ii=fe_support_on_face[face][i];
+ const unsigned int jj=fe_support_on_face[face][j];
+ ff_matrix(ii,jj) += (
+ (convection * normal - tau_stab) *
+ tr_phi[i] * tr_phi[j]
+ ) * JxW;
+ }
- template <int dim>
- void
- HDG<dim>::assemble_system (const bool trace_reconstruct)
- {
- QGauss<dim> quadrature_formula(fe.degree+1);
- QGauss<dim-1> face_quadrature_formula(fe.degree+1);
-
- FEValues<dim> fe_values_local (mapping, fe_local, quadrature_formula,
- update_values | update_gradients |
- update_JxW_values | update_quadrature_points);
- FEFaceValues<dim> fe_face_values (mapping, fe, face_quadrature_formula,
- update_values | update_normal_vectors |
- update_quadrature_points |
- update_JxW_values);
- FEFaceValues<dim> fe_face_values_local (mapping, fe_local,
- face_quadrature_formula,
- update_values);
-
- const unsigned int n_q_points = quadrature_formula.size();
- const unsigned int n_face_q_points = face_quadrature_formula.size();
-
- const unsigned int dofs_per_cell = fe.dofs_per_cell;
- const unsigned int loc_dofs_per_cell = fe_local.dofs_per_cell;
-
- FullMatrix<double> ll_matrix (loc_dofs_per_cell, loc_dofs_per_cell);
- FullMatrix<double> lf_matrix (loc_dofs_per_cell, dofs_per_cell);
- FullMatrix<double> fl_matrix (dofs_per_cell, loc_dofs_per_cell);
- FullMatrix<double> tmp_matrix (dofs_per_cell, loc_dofs_per_cell);
- FullMatrix<double> ff_matrix (dofs_per_cell, dofs_per_cell);
- Vector<double> l_rhs (loc_dofs_per_cell);
- Vector<double> f_rhs (dofs_per_cell);
- Vector<double> tmp_rhs (loc_dofs_per_cell);
-
- std::vector<types::global_dof_index> dof_indices (dofs_per_cell);
- std::vector<types::global_dof_index> loc_dof_indices (loc_dofs_per_cell);
-
- ConvectionVelocity<dim> convection;
- std::vector<Tensor<1,dim> > convection_values (n_q_points);
- std::vector<Tensor<1,dim> > convection_values_face (n_face_q_points);
-
- std::vector<double> trace_values(n_face_q_points);
-
- // Choose stabilization parameter to be 5 * diffusion = 5
- const double tau_stab_diffusion = 5.;
- std::vector<double> tau_stab (n_q_points);
-
- RightHandSide<dim> right_hand_side;
- std::vector<double> rhs_values (n_q_points);
-
- const Solution<dim> exact_solution;
- std::vector<double> neumann_values (n_face_q_points);
-
- const FEValuesExtractors::Vector gradients (0);
- const FEValuesExtractors::Scalar values (dim);
-
- typename DoFHandler<dim>::active_cell_iterator
- cell = dof_handler.begin_active(),
- loc_cell = dof_handler_local.begin_active(),
- endc = dof_handler.end();
- for (; cell!=endc; ++cell, ++loc_cell)
- {
- if (!trace_reconstruct)
- {
- lf_matrix = 0;
- fl_matrix = 0;
- ff_matrix = 0;
- f_rhs = 0;
- }
- fe_values_local.reinit (loc_cell);
- right_hand_side.value_list (fe_values_local.get_quadrature_points(),
- rhs_values);
- convection.value_list(fe_values_local.get_quadrature_points(),
- convection_values);
-
- for (unsigned int i=0; i<loc_dofs_per_cell; ++i)
- for (unsigned int j=0; j<loc_dofs_per_cell; ++j)
- {
- double sum = 0;
- for (unsigned int q=0; q<n_q_points; ++q)
- sum += (fe_values_local[gradients].value(i,q) *
- fe_values_local[gradients].value(j,q)
- -
- fe_values_local[gradients].divergence(i,q) *
- fe_values_local[values].value(j,q)
- +
- fe_values_local[values].value(i,q) *
- fe_values_local[gradients].divergence(j,q)
- -
- fe_values_local[values].value(j,q) *
- (fe_values_local[values].gradient(i,q) *
- convection_values[q])
- ) * fe_values_local.JxW(q);
- ll_matrix(i,j) = sum;
- }
- for (unsigned int i=0; i<loc_dofs_per_cell; ++i)
- {
- double sum = 0.;
- for (unsigned int q=0; q<n_q_points; ++q)
- sum += rhs_values[q] * fe_values_local.JxW(q) *
- fe_values_local[values].value(i,q);
- l_rhs(i) = sum;
- }
-
- for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
- {
- fe_face_values_local.reinit(loc_cell, face);
- fe_face_values.reinit(cell, face);
- const std::vector<double> &JxW = fe_face_values.get_JxW_values();
- const std::vector<Point<dim> > &normals =
- fe_face_values.get_normal_vectors();
- convection.value_list(fe_face_values.get_quadrature_points(),
- convection_values_face);
- for (unsigned int q=0; q<n_face_q_points; ++q)
- tau_stab[q] = (tau_stab_diffusion +
- std::abs(convection_values_face[q] * normals[q]));
- if (!trace_reconstruct)
- {
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- for (unsigned int j=0; j<loc_dofs_per_cell; ++j)
+ if (cell->face(face)->at_boundary()
+ &&
+ (cell->face(face)->boundary_indicator() == 1))
{
- double sum_lf = 0., sum_fl = 0.;
- for (unsigned int q=0; q<n_face_q_points; ++q)
+ const double neumann_value =
+ exact_solution.value(fe_face_values.quadrature_point(q));
+ for (unsigned int i=0; i<fe_support_on_face[face].size(); ++i)
{
- sum_lf += (fe_face_values.shape_value(i,q) *
- (fe_face_values_local[gradients].value(j,q) *
- normals[q]
- +
- (convection_values_face[q] *
- normals[q]
- -
- tau_stab[q]) *
- fe_face_values_local[values].value(j,q))
- ) * JxW[q];
- sum_fl += (fe_face_values.shape_value(i,q) *
- (fe_face_values_local[gradients].value(j,q) *
- normals[q]
- +
- tau_stab[q] *
- fe_face_values_local[values].value(j,q))
- ) * JxW[q];
+ const unsigned int ii=fe_support_on_face[face][i];
+ f_rhs(ii) -= tr_phi[i] * neumann_value * JxW;
}
- lf_matrix(j,i) += sum_lf;
- fl_matrix(i,j) -= sum_fl;
}
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- for (unsigned int j=0; j<dofs_per_cell; ++j)
- {
- double sum = 0;
- for (unsigned int q=0; q<n_face_q_points; ++q)
- sum += ((convection_values_face[q] * normals[q]
- -
- tau_stab[q]
- ) *
- fe_face_values.shape_value(i,q) *
- fe_face_values.shape_value(j,q)
- ) * JxW[q];
- ff_matrix(i,j) += sum;
- }
- if (cell->face(face)->at_boundary()
- &&
- (cell->face(face)->boundary_indicator() == 1))
+ }
+
+ for (unsigned int i=0; i<fe_local_support_on_face[face].size(); ++i)
+ for (unsigned int j=0; j<fe_local_support_on_face[face].size(); ++j)
{
- exact_solution.value_list(fe_face_values.get_quadrature_points(),
- neumann_values);
- for (unsigned int i=0; i<dofs_per_cell; ++i)
- {
- double sum = 0;
- for (unsigned int q=0; q<n_face_q_points; ++q)
- sum -= (fe_face_values.shape_value(i,q) *
- neumann_values[q]) * JxW[q];
- f_rhs(i) += sum;
- }
+ const unsigned int ii=fe_local_support_on_face[face][i];
+ const unsigned int jj=fe_local_support_on_face[face][j];
+ ll_matrix(ii,jj) += tau_stab * u_phi[i] * u_phi[j] * JxW;
}
- }
- for (unsigned int i=0; i<loc_dofs_per_cell; ++i)
- for (unsigned int j=0; j<loc_dofs_per_cell; ++j)
- {
- double sum = 0;
- for (unsigned int q=0; q<n_face_q_points; ++q)
- sum += (tau_stab[q] *
- fe_face_values_local[values].value(i,q) *
- fe_face_values_local[values].value(j,q)) * JxW[q];
- ll_matrix(i,j) += sum;
- }
- // compute the local right hand side contributions from trace
- if (trace_reconstruct)
- {
- fe_face_values.get_function_values (solution, trace_values);
- for (unsigned int i=0; i<loc_dofs_per_cell; ++i)
+ // compute the local right hand side contributions from trace
+ if (trace_reconstruct)
+ for (unsigned int i=0; i<fe_local_support_on_face[face].size(); ++i)
{
- double sum = 0;
- for (unsigned int q=0; q<n_face_q_points; ++q)
- sum += ((fe_face_values_local[gradients].value(i,q) *
- normals[q]) *
- trace_values[q]
- +
- fe_face_values_local[values].value(i,q) *
- (convection_values_face[q] * normals[q]
- -
- tau_stab[q]) * trace_values[q]) * JxW[q];
- l_rhs(i) -= sum;
+ const unsigned int ii=fe_local_support_on_face[face][i];
+ l_rhs(ii) -= (q_phi[i] * normal
+ +
+ u_phi[i] * (convection * normal - tau_stab)
+ ) * trace_values[q] * JxW;
}
- }
- }
-
- // invert ll_matrix and overwrite
- ll_matrix.gauss_jordan();
- if (!trace_reconstruct)
- {
- // tmp_matrix = fl_matrix * ll_matrix
- fl_matrix.mmult(tmp_matrix, ll_matrix);
-
- // f_rhs = tmp_matrix * l_rhs
- tmp_matrix.vmult_add(f_rhs, l_rhs);
-
- // ff_matrix = ff_matrix + tmp_matrix * lf_matrix
- tmp_matrix.mmult(ff_matrix, lf_matrix, true);
- cell->get_dof_indices(dof_indices);
- constraints.distribute_local_to_global (ff_matrix, f_rhs,
- dof_indices,
- system_matrix, system_rhs);
- }
- else
- {
- ll_matrix.vmult(tmp_rhs, l_rhs);
- loc_cell->set_dof_values(tmp_rhs, solution_local);
- }
- }
- }
+ }
+ }
+ ll_matrix.gauss_jordan();
+ if (trace_reconstruct == false)
+ {
+ fl_matrix.mmult(tmp_matrix, ll_matrix);
+ tmp_matrix.vmult_add(f_rhs, l_rhs);
+ tmp_matrix.mmult(ff_matrix, lf_matrix, true);
+ cell->get_dof_indices(dof_indices);
+ constraints.distribute_local_to_global (ff_matrix, f_rhs,
+ dof_indices,
+ system_matrix, system_rhs);
+ }
+ else
+ {
+ ll_matrix.vmult(tmp_rhs, l_rhs);
+ loc_cell->set_dof_values(tmp_rhs, solution_local);
+ }
+ }
+}
- template <int dim>
- void HDG<dim>::solve ()
- {
- SolverControl solver_control (system_matrix.m()*10,
- 1e-10*system_rhs.l2_norm());
- SolverGMRES<> solver (solver_control, 50);
- solver.solve (system_matrix, solution, system_rhs,
- PreconditionIdentity());
- std::cout << " Number of GMRES iterations: " << solver_control.last_step()
- << std::endl;
+template <int dim>
+void Step51<dim>::solve ()
+{
+ SolverControl solver_control (system_matrix.m()*10,
+ 1e-10*system_rhs.l2_norm());
+ SolverGMRES<> solver (solver_control, 50);
+ solver.solve (system_matrix, solution, system_rhs,
+ PreconditionIdentity());
- system_matrix.clear();
- sparsity_pattern.reinit(0,0,0,1);
- constraints.distribute(solution);
+ std::cout << " Number of GMRES iterations: " << solver_control.last_step()
+ << std::endl;
- // update local values
- assemble_system(true);
- }
+ system_matrix.clear();
+ sparsity_pattern.reinit(0,0,0,1);
+ constraints.distribute(solution);
+
+ // update local values
+ assemble_system(true);
+}
- template <int dim>
- void
- HDG<dim>::postprocess()
- {
- const unsigned int n_active_cells=triangulation.n_active_cells();
- Vector<float> difference_per_cell (triangulation.n_active_cells());
-
- ComponentSelectFunction<dim> value_select (dim, dim+1);
- VectorTools::integrate_difference (mapping, dof_handler_local,
- solution_local,
- SolutionAndGradient<dim>(),
- difference_per_cell,
- QGauss<dim>(fe.degree+2),
- VectorTools::L2_norm,
- &value_select);
- const double L2_error = difference_per_cell.l2_norm();
-
- ComponentSelectFunction<dim> gradient_select (std::pair<unsigned int,unsigned int>(0, dim),
- dim+1);
- VectorTools::integrate_difference (mapping, dof_handler_local,
- solution_local,
- SolutionAndGradient<dim>(),
- difference_per_cell,
- QGauss<dim>(fe.degree+2),
- VectorTools::L2_norm,
- &gradient_select);
- const double grad_error = difference_per_cell.l2_norm();
-
- convergence_table.add_value("cells", n_active_cells);
- convergence_table.add_value("dofs", dof_handler.n_dofs());
- convergence_table.add_value("val L2", L2_error);
- convergence_table.add_value("grad L2", grad_error);
-
- // construct post-processed solution with (hopefully) higher order of
- // accuracy
- QGauss<dim> quadrature(fe_u_post.degree+1);
- FEValues<dim> fe_values(mapping, fe_u_post, quadrature,
- update_values | update_JxW_values |
- update_gradients);
-
- const unsigned int n_q_points = quadrature.size();
- std::vector<double> u_values(n_q_points);
- std::vector<Tensor<1,dim> > u_gradients(n_q_points);
- FEValuesExtractors::Vector gradients(0);
- FEValuesExtractors::Scalar values(dim);
- FEValues<dim> fe_values_local(mapping, fe_local, quadrature, update_values);
- FullMatrix<double> cell_matrix(fe_u_post.dofs_per_cell,
- fe_u_post.dofs_per_cell);
- Vector<double> cell_rhs(fe_u_post.dofs_per_cell);
- Vector<double> cell_sol(fe_u_post.dofs_per_cell);
-
- typename DoFHandler<dim>::active_cell_iterator
- cell_loc = dof_handler_local.begin_active(),
- cell = dof_handler_u_post.begin_active(),
- endc = dof_handler_u_post.end();
- for ( ; cell != endc; ++cell, ++cell_loc)
- {
- fe_values.reinit(cell);
- fe_values_local.reinit(cell_loc);
-
- fe_values_local[values].get_function_values(solution_local, u_values);
- fe_values_local[gradients].get_function_values(solution_local, u_gradients);
- for (unsigned int i=1; i<fe_u_post.dofs_per_cell; ++i)
- {
- for (unsigned int j=0; j<fe_u_post.dofs_per_cell; ++j)
- {
- double sum = 0;
- for (unsigned int q=0; q<quadrature.size(); ++q)
- sum += (fe_values.shape_grad(i,q) *
- fe_values.shape_grad(j,q)
- ) * fe_values.JxW(q);
- cell_matrix(i,j) = sum;
- }
- double sum = 0;
- for (unsigned int q=0; q<quadrature.size(); ++q)
- sum -= (fe_values.shape_grad(i,q) * u_gradients[q]
- ) * fe_values.JxW(q);
- cell_rhs(i) = sum;
- }
- for (unsigned int j=0; j<fe_u_post.dofs_per_cell; ++j)
- {
- double sum = 0;
- for (unsigned int q=0; q<quadrature.size(); ++q)
- sum += fe_values.shape_value(j,q) * fe_values.JxW(q);
- cell_matrix(0,j) = sum;
- }
+template <int dim>
+void
+Step51<dim>::postprocess()
+{
+ const unsigned int n_active_cells=triangulation.n_active_cells();
+ Vector<float> difference_per_cell (triangulation.n_active_cells());
+
+ ComponentSelectFunction<dim> value_select (dim, dim+1);
+ VectorTools::integrate_difference (mapping, dof_handler_local,
+ solution_local,
+ SolutionAndGradient<dim>(),
+ difference_per_cell,
+ QGauss<dim>(fe.degree+2),
+ VectorTools::L2_norm,
+ &value_select);
+ const double L2_error = difference_per_cell.l2_norm();
+
+ ComponentSelectFunction<dim> gradient_select (std::pair<unsigned int,unsigned int>(0, dim),
+ dim+1);
+ VectorTools::integrate_difference (mapping, dof_handler_local,
+ solution_local,
+ SolutionAndGradient<dim>(),
+ difference_per_cell,
+ QGauss<dim>(fe.degree+2),
+ VectorTools::L2_norm,
+ &gradient_select);
+ const double grad_error = difference_per_cell.l2_norm();
+
+ convergence_table.add_value("cells", n_active_cells);
+ convergence_table.add_value("dofs", dof_handler.n_dofs());
+ convergence_table.add_value("val L2", L2_error);
+ convergence_table.add_value("grad L2", grad_error);
+
+ // construct post-processed solution with (hopefully) higher order of
+ // accuracy
+ QGauss<dim> quadrature(fe_u_post.degree+1);
+ FEValues<dim> fe_values(mapping, fe_u_post, quadrature,
+ update_values | update_JxW_values |
+ update_gradients);
+
+ const unsigned int n_q_points = quadrature.size();
+ std::vector<double> u_values(n_q_points);
+ std::vector<Tensor<1,dim> > u_gradients(n_q_points);
+ FEValuesExtractors::Vector fluxes(0);
+ FEValuesExtractors::Scalar scalar(dim);
+ FEValues<dim> fe_values_local(mapping, fe_local, quadrature, update_values);
+ FullMatrix<double> cell_matrix(fe_u_post.dofs_per_cell,
+ fe_u_post.dofs_per_cell);
+ Vector<double> cell_rhs(fe_u_post.dofs_per_cell);
+ Vector<double> cell_sol(fe_u_post.dofs_per_cell);
+
+ typename DoFHandler<dim>::active_cell_iterator
+ cell_loc = dof_handler_local.begin_active(),
+ cell = dof_handler_u_post.begin_active(),
+ endc = dof_handler_u_post.end();
+ for ( ; cell != endc; ++cell, ++cell_loc)
+ {
+ fe_values.reinit(cell);
+ fe_values_local.reinit(cell_loc);
+
+ fe_values_local[scalar].get_function_values(solution_local, u_values);
+ fe_values_local[fluxes].get_function_values(solution_local, u_gradients);
+ for (unsigned int i=1; i<fe_u_post.dofs_per_cell; ++i)
{
+ for (unsigned int j=0; j<fe_u_post.dofs_per_cell; ++j)
+ {
+ double sum = 0;
+ for (unsigned int q=0; q<quadrature.size(); ++q)
+ sum += (fe_values.shape_grad(i,q) *
+ fe_values.shape_grad(j,q)
+ ) * fe_values.JxW(q);
+ cell_matrix(i,j) = sum;
+ }
double sum = 0;
for (unsigned int q=0; q<quadrature.size(); ++q)
- sum += u_values[q] * fe_values.JxW(q);
- cell_rhs(0) = sum;
+ sum -= (fe_values.shape_grad(i,q) * u_gradients[q]
+ ) * fe_values.JxW(q);
+ cell_rhs(i) = sum;
}
-
- cell_matrix.gauss_jordan();
- cell_matrix.vmult(cell_sol, cell_rhs);
- cell->distribute_local_to_global(cell_sol, solution_u_post);
+ for (unsigned int j=0; j<fe_u_post.dofs_per_cell; ++j)
+ {
+ double sum = 0;
+ for (unsigned int q=0; q<quadrature.size(); ++q)
+ sum += fe_values.shape_value(j,q) * fe_values.JxW(q);
+ cell_matrix(0,j) = sum;
+ }
+ {
+ double sum = 0;
+ for (unsigned int q=0; q<quadrature.size(); ++q)
+ sum += u_values[q] * fe_values.JxW(q);
+ cell_rhs(0) = sum;
}
- VectorTools::integrate_difference (mapping, dof_handler_u_post,
- solution_u_post,
- Solution<dim>(),
- difference_per_cell,
- QGauss<dim>(fe.degree+3),
- VectorTools::L2_norm);
- double post_error = difference_per_cell.l2_norm();
- convergence_table.add_value("val L2-post", post_error);
- }
+ cell_matrix.gauss_jordan();
+ cell_matrix.vmult(cell_sol, cell_rhs);
+ cell->distribute_local_to_global(cell_sol, solution_u_post);
+ }
+ VectorTools::integrate_difference (mapping, dof_handler_u_post,
+ solution_u_post,
+ Solution<dim>(),
+ difference_per_cell,
+ QGauss<dim>(fe.degree+3),
+ VectorTools::L2_norm);
+ double post_error = difference_per_cell.l2_norm();
+ convergence_table.add_value("val L2-post", post_error);
+}
- template <int dim>
- void HDG<dim>::output_results (const unsigned int cycle)
- {
- std::string filename;
+
+template <int dim>
+void Step51<dim>::output_results (const unsigned int cycle)
+{
+ std::string filename;
+ switch (refinement_mode)
+ {
+ case global_refinement:
+ filename = "solution-global";
+ break;
+ case adaptive_refinement:
+ filename = "solution-adaptive";
+ break;
+ default:
+ Assert (false, ExcNotImplemented());
+ }
+
+ std::string face_out(filename);
+ face_out += "-face";
+
+ filename += "-q" + Utilities::int_to_string(fe.degree,1);
+ filename += "-" + Utilities::int_to_string(cycle,2);
+ filename += ".vtk";
+ std::ofstream output (filename.c_str());
+
+ DataOut<dim> data_out;
+ std::vector<std::string> names (dim, "gradient");
+ names.push_back ("solution");
+ std::vector<DataComponentInterpretation::DataComponentInterpretation>
+ component_interpretation
+ (dim+1, DataComponentInterpretation::component_is_part_of_vector);
+ component_interpretation[dim]
+ = DataComponentInterpretation::component_is_scalar;
+ data_out.add_data_vector (dof_handler_local, solution_local,
+ names, component_interpretation);
+
+ // Post-processed solution: can now add more than 1 dof_handler to
+ // the DataOut object!
+ std::vector<std::string> post_name(1,"u_post");
+ std::vector<DataComponentInterpretation::DataComponentInterpretation>
+ post_comp_type(1, DataComponentInterpretation::component_is_scalar);
+ data_out.add_data_vector (dof_handler_u_post, solution_u_post,
+ post_name, post_comp_type);
+
+ data_out.build_patches (fe.degree);
+ data_out.write_vtk (output);
+
+ face_out += "-q" + Utilities::int_to_string(fe.degree,1);
+ face_out += "-" + Utilities::int_to_string(cycle,2);
+ face_out += ".vtk";
+ std::ofstream face_output (face_out.c_str());
+
+ DataOutFaces<dim> data_out_face(false);
+ std::vector<std::string> face_name(1,"lambda");
+ std::vector<DataComponentInterpretation::DataComponentInterpretation>
+ face_component_type(1, DataComponentInterpretation::component_is_scalar);
+
+ data_out_face.add_data_vector (dof_handler,
+ solution,
+ face_name,
+ face_component_type);
+
+ data_out_face.build_patches (fe.degree);
+ data_out_face.write_vtk (face_output);
+}
+
+
+
+template <int dim>
+void Step51<dim>::refine_grid (const unsigned int cycle)
+{
+ const bool do_cube = true;
+ if (cycle == 0)
+ {
+ if (!do_cube)
+ {
+ GridGenerator::hyper_ball (triangulation);
+ static const HyperBallBoundary<dim> boundary;
+ triangulation.set_boundary(0, boundary);
+ triangulation.refine_global(6-2*dim);
+ }
+ else
+ GridGenerator::subdivided_hyper_cube (triangulation, 2, -1, 1);
+ }
+ else
switch (refinement_mode)
{
case global_refinement:
- filename = "solution-global";
- break;
+ {
+ if (do_cube)
+ {
+ triangulation.clear();
+ GridGenerator::subdivided_hyper_cube (triangulation, 2+(cycle%2), -1, 1);
+ triangulation.refine_global(3-dim+cycle/2);
+ }
+ else
+ triangulation.refine_global (1);
+ break;
+ }
+
case adaptive_refinement:
- filename = "solution-adaptive";
+ {
+ Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
+
+ FEValuesExtractors::Scalar scalar(dim);
+ typename FunctionMap<dim>::type neumann_boundary;
+ KellyErrorEstimator<dim>::estimate (dof_handler_local,
+ QGauss<dim-1>(3),
+ neumann_boundary,
+ solution_local,
+ estimated_error_per_cell,
+ fe_local.component_mask(scalar));
+
+ GridRefinement::refine_and_coarsen_fixed_number (triangulation,
+ estimated_error_per_cell,
+ 0.3, 0.);
+
+ triangulation.execute_coarsening_and_refinement ();
+
break;
+ }
+
default:
+ {
Assert (false, ExcNotImplemented());
}
-
- std::string face_out(filename);
- face_out += "-face";
-
- filename += "-q" + Utilities::int_to_string(fe.degree,1);
- filename += "-" + Utilities::int_to_string(cycle,2);
- filename += ".vtk";
- std::ofstream output (filename.c_str());
-
- DataOut<dim> data_out;
- std::vector<std::string> names (dim, "gradient");
- names.push_back ("solution");
- std::vector<DataComponentInterpretation::DataComponentInterpretation>
- component_interpretation
- (dim+1, DataComponentInterpretation::component_is_part_of_vector);
- component_interpretation[dim]
- = DataComponentInterpretation::component_is_scalar;
- data_out.add_data_vector (dof_handler_local, solution_local,
- names, component_interpretation);
-
- // Post-processed solution
- std::vector<std::string> post_name(1,"u_post");
- std::vector<DataComponentInterpretation::DataComponentInterpretation>
- post_comp_type(1, DataComponentInterpretation::component_is_scalar);
- data_out.add_data_vector (dof_handler_u_post, solution_u_post,
- post_name, post_comp_type);
-
- // build patches based on the highest degree, i.e. the post-proc'd soln
- data_out.build_patches (fe_u_post.degree);
- data_out.write_vtk (output);
-
- face_out += "-q" + Utilities::int_to_string(fe.degree,1);
- face_out += "-" + Utilities::int_to_string(cycle,2);
- face_out += ".vtk";
- std::ofstream face_output (face_out.c_str());
-
- DataOutFaces<dim> data_out_face(false);
- std::vector<std::string> face_name(1,"lambda");
- std::vector<DataComponentInterpretation::DataComponentInterpretation>
- face_component_type(1, DataComponentInterpretation::component_is_scalar);
-
- data_out_face.add_data_vector (dof_handler,
- solution,
- face_name,
- face_component_type);
-
- data_out_face.build_patches (fe.degree);
- data_out_face.write_vtk (face_output);
-
+ }
}
- template <int dim>
- void HDG<dim>::run ()
- {
- const bool do_cube = true;
- if (!do_cube)
- {
- GridGenerator::hyper_ball (triangulation);
- static const HyperBallBoundary<dim> boundary;
- triangulation.set_boundary(0, boundary);
- triangulation.refine_global(6-2*dim);
- }
- for (unsigned int cycle=0; cycle<10; ++cycle)
- {
- std::cout << "Cycle " << cycle << ':' << std::endl;
-
- if (do_cube)
- {
- triangulation.clear();
- GridGenerator::subdivided_hyper_cube (triangulation, 2+(cycle%2), -1, 1);
- triangulation.refine_global(3-dim+cycle/2);
- }
- else triangulation.refine_global(1);
-
- setup_system ();
- assemble_system (false);
- solve ();
- postprocess();
- output_results (cycle);
- }
+template <int dim>
+void Step51<dim>::run ()
+{
+ for (unsigned int cycle=0; cycle<10; ++cycle)
+ {
+ std::cout << "Cycle " << cycle << ':' << std::endl;
+
+ refine_grid (cycle);
+ setup_system ();
+ assemble_system (false);
+ solve ();
+ postprocess();
+ output_results (cycle);
+ }
- convergence_table.set_precision("val L2", 3);
- convergence_table.set_scientific("val L2", true);
- convergence_table.set_precision("grad L2", 3);
- convergence_table.set_scientific("grad L2", true);
- convergence_table.set_precision("val L2-post", 3);
- convergence_table.set_scientific("val L2-post", true);
+ convergence_table.set_precision("val L2", 3);
+ convergence_table.set_scientific("val L2", true);
+ convergence_table.set_precision("grad L2", 3);
+ convergence_table.set_scientific("grad L2", true);
+ convergence_table.set_precision("val L2-post", 3);
+ convergence_table.set_scientific("val L2-post", true);
- convergence_table
- .evaluate_convergence_rates("val L2", "cells", ConvergenceTable::reduction_rate_log2, dim);
- convergence_table
- .evaluate_convergence_rates("grad L2", "cells", ConvergenceTable::reduction_rate_log2, dim);
- convergence_table
- .evaluate_convergence_rates("val L2-post", "cells", ConvergenceTable::reduction_rate_log2, dim);
- convergence_table.write_text(std::cout);
- }
+ convergence_table
+ .evaluate_convergence_rates("val L2", "cells", ConvergenceTable::reduction_rate_log2, dim);
+ convergence_table
+ .evaluate_convergence_rates("grad L2", "cells", ConvergenceTable::reduction_rate_log2, dim);
+ convergence_table
+ .evaluate_convergence_rates("val L2-post", "cells", ConvergenceTable::reduction_rate_log2, dim);
+ convergence_table.write_text(std::cout);
}
try
{
using namespace dealii;
- using namespace Step51;
deallog.depth_console (0);
<< "=============================================" << std::endl
<< std::endl;
- HDG<dim> hdg_problem (1, HDG<dim>::adaptive_refinement);
+ Step51<dim> hdg_problem (1, Step51<dim>::adaptive_refinement);
hdg_problem.run ();
std::cout << std::endl;
<< "===========================================" << std::endl
<< std::endl;
- HDG<dim> hdg_problem (1, HDG<dim>::global_refinement);
+ Step51<dim> hdg_problem (1, Step51<dim>::global_refinement);
hdg_problem.run ();
std::cout << std::endl;
<< "===========================================" << std::endl
<< std::endl;
- HDG<dim> hdg_problem (3, HDG<dim>::global_refinement);
+ Step51<dim> hdg_problem (3, Step51<dim>::global_refinement);
hdg_problem.run ();
std::cout << std::endl;