]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
changing the reference for saddle point problem; fixed bug in E(u)
authorfrohne <frohne@0785d39b-7218-0410-832d-ea1e28bc413d>
Fri, 17 Aug 2012 10:41:18 +0000 (10:41 +0000)
committerfrohne <frohne@0785d39b-7218-0410-832d-ea1e28bc413d>
Fri, 17 Aug 2012 10:41:18 +0000 (10:41 +0000)
git-svn-id: https://svn.dealii.org/trunk@26001 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-41/doc/intro.dox

index 42dec00a16644118ff3502353b6e77d54d00ff56..360833e05df2ad366957d09917af8bafbe7c6699 100644 (file)
@@ -91,7 +91,7 @@ obstacle).
 
 An obvious way to obtain the variational formulation of the obstacle problem is to consider the total potential energy:
 @f{equation*}
- E(u):=\dfrac{1}{2}\int\limits_{\Omega} \nabla u \cdot \nabla - \int\limits_{\Omega} fu.
+ E(u):=\dfrac{1}{2}\int\limits_{\Omega} \nabla u \cdot \nabla - \int\limits_{\Omega} fu.
 @f}
 We have to find a solution $u\in G$ of the following minimization problem:
 @f{equation*}
@@ -165,9 +165,8 @@ statement above only appears to have the wrong sign because we have
 $\mu-\lambda<0$ at points where $\lambda=0$, given the definition of $K$.
 
 The existence and uniqueness of $(u,\lambda)\in V\times K$ of this saddle
-point problem has been stated in Grossmann and Roos: Numerical treatment of
-partial differential equations, Springer-Verlag, Heidelberg-Berlin, 2007, 596
-pages, ISBN 978-3-540-71582-5.
+point problem has been stated in Glowinski, Lions and Tr\'{e}moli\`{e}res: Numerical Analysis of Variational
+Inequalities, North-Holland, 1981.
 
 
 

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.