* in a loop over all tensor product polynomials.
*/
void
- compute(const Point<dim> & unit_point,
- std::vector<Tensor<1, dim>> &values,
- std::vector<Tensor<2, dim>> &grads,
- std::vector<Tensor<3, dim>> &grad_grads,
- std::vector<Tensor<4, dim>> &third_derivatives,
- std::vector<Tensor<5, dim>> &fourth_derivatives) const override;
+ evaluate(const Point<dim> & unit_point,
+ std::vector<Tensor<1, dim>> &values,
+ std::vector<Tensor<2, dim>> &grads,
+ std::vector<Tensor<3, dim>> &grad_grads,
+ std::vector<Tensor<4, dim>> &third_derivatives,
+ std::vector<Tensor<5, dim>> &fourth_derivatives) const override;
/**
* Return the name of the space, which is <tt>ABF</tt>.
* in a loop over all tensor product polynomials.
*/
void
- compute(const Point<dim> & unit_point,
- std::vector<Tensor<1, dim>> &values,
- std::vector<Tensor<2, dim>> &grads,
- std::vector<Tensor<3, dim>> &grad_grads,
- std::vector<Tensor<4, dim>> &third_derivatives,
- std::vector<Tensor<5, dim>> &fourth_derivatives) const override;
+ evaluate(const Point<dim> & unit_point,
+ std::vector<Tensor<1, dim>> &values,
+ std::vector<Tensor<2, dim>> &grads,
+ std::vector<Tensor<3, dim>> &grad_grads,
+ std::vector<Tensor<4, dim>> &third_derivatives,
+ std::vector<Tensor<5, dim>> &fourth_derivatives) const override;
/**
* Return the degree of the BDM space, which is one less than the highest
* in a loop over all tensor product polynomials.
*/
void
- compute(const Point<dim> & unit_point,
- std::vector<Tensor<1, dim>> &values,
- std::vector<Tensor<2, dim>> &grads,
- std::vector<Tensor<3, dim>> &grad_grads,
- std::vector<Tensor<4, dim>> &third_derivatives,
- std::vector<Tensor<5, dim>> &fourth_derivatives) const override;
+ evaluate(const Point<dim> & unit_point,
+ std::vector<Tensor<1, dim>> &values,
+ std::vector<Tensor<2, dim>> &grads,
+ std::vector<Tensor<3, dim>> &grad_grads,
+ std::vector<Tensor<4, dim>> &third_derivatives,
+ std::vector<Tensor<5, dim>> &fourth_derivatives) const override;
/**
* Return the number of polynomials in the space <tt>BR(degree)</tt> without
* in a loop over all tensor product polynomials.
*/
void
- compute(const Point<dim> & unit_point,
- std::vector<Tensor<1, dim>> &values,
- std::vector<Tensor<2, dim>> &grads,
- std::vector<Tensor<3, dim>> &grad_grads,
- std::vector<Tensor<4, dim>> &third_derivatives,
- std::vector<Tensor<5, dim>> &fourth_derivatives) const override;
+ evaluate(const Point<dim> & unit_point,
+ std::vector<Tensor<1, dim>> &values,
+ std::vector<Tensor<2, dim>> &grads,
+ std::vector<Tensor<3, dim>> &grad_grads,
+ std::vector<Tensor<4, dim>> &third_derivatives,
+ std::vector<Tensor<5, dim>> &fourth_derivatives) const override;
/**
* Return the name of the space, which is <tt>Nedelec</tt>.
* in a loop over all tensor product polynomials.
*/
void
- compute(const Point<dim> & unit_point,
- std::vector<Tensor<1, dim>> &values,
- std::vector<Tensor<2, dim>> &grads,
- std::vector<Tensor<3, dim>> &grad_grads,
- std::vector<Tensor<4, dim>> &third_derivatives,
- std::vector<Tensor<5, dim>> &fourth_derivatives) const override;
+ evaluate(const Point<dim> & unit_point,
+ std::vector<Tensor<1, dim>> &values,
+ std::vector<Tensor<2, dim>> &grads,
+ std::vector<Tensor<3, dim>> &grad_grads,
+ std::vector<Tensor<4, dim>> &third_derivatives,
+ std::vector<Tensor<5, dim>> &fourth_derivatives) const override;
/**
* Return the name of the space, which is <tt>RaviartThomas</tt>.
* in a loop over all tensor product polynomials.
*/
void
- compute(const Point<dim> & unit_point,
- std::vector<Tensor<1, dim>> &values,
- std::vector<Tensor<2, dim>> &grads,
- std::vector<Tensor<3, dim>> &grad_grads,
- std::vector<Tensor<4, dim>> &third_derivatives,
- std::vector<Tensor<5, dim>> &fourth_derivatives) const override;
+ evaluate(const Point<dim> & unit_point,
+ std::vector<Tensor<1, dim>> &values,
+ std::vector<Tensor<2, dim>> &grads,
+ std::vector<Tensor<3, dim>> &grad_grads,
+ std::vector<Tensor<4, dim>> &third_derivatives,
+ std::vector<Tensor<5, dim>> &fourth_derivatives) const override;
/**
* Return the name of the space, which is <tt>RT_Bubbles</tt>.
*
* Any derived class must provide the most basic properties for shape
* functions evaluated on the reference cell. This includes, but is not
- * limited to, implementing the <tt>compute</tt>, <tt>name</tt>, and
- * <tt>clone</tt> member functions. These functions are necessary to store the
+ * limited to, implementing the evaluate(), name(), and
+ * clone() member functions. These functions are necessary to store the
* most basic information of how the polynomials in the derived class evaluate
* at a given point on the reference cell. More information on each function can
* be found in the corresponding function's documentation.
* in a loop over all tensor product polynomials.
*/
virtual void
- compute(const Point<dim> & unit_point,
- std::vector<Tensor<1, dim>> &values,
- std::vector<Tensor<2, dim>> &grads,
- std::vector<Tensor<3, dim>> &grad_grads,
- std::vector<Tensor<4, dim>> &third_derivatives,
- std::vector<Tensor<5, dim>> &fourth_derivatives) const = 0;
+ evaluate(const Point<dim> & unit_point,
+ std::vector<Tensor<1, dim>> &values,
+ std::vector<Tensor<2, dim>> &grads,
+ std::vector<Tensor<3, dim>> &grad_grads,
+ std::vector<Tensor<4, dim>> &third_derivatives,
+ std::vector<Tensor<5, dim>> &fourth_derivatives) const = 0;
/**
* Return the number of polynomials.
if (update_flags & (update_values | update_gradients))
for (unsigned int k = 0; k < n_q_points; ++k)
{
- poly_space->compute(quadrature.point(k),
- values,
- grads,
- grad_grads,
- third_derivatives,
- fourth_derivatives);
+ poly_space->evaluate(quadrature.point(k),
+ values,
+ grads,
+ grad_grads,
+ third_derivatives,
+ fourth_derivatives);
if (update_flags & update_values)
{
template <int dim>
void
-PolynomialsABF<dim>::compute(
+PolynomialsABF<dim>::evaluate(
const Point<dim> & unit_point,
std::vector<Tensor<1, dim>> &values,
std::vector<Tensor<2, dim>> &grads,
template <int dim>
void
-PolynomialsBDM<dim>::compute(
+PolynomialsBDM<dim>::evaluate(
const Point<dim> & unit_point,
std::vector<Tensor<1, dim>> &values,
std::vector<Tensor<2, dim>> &grads,
template <int dim>
void
-PolynomialsBernardiRaugel<dim>::compute(
+PolynomialsBernardiRaugel<dim>::evaluate(
const Point<dim> & unit_point,
std::vector<Tensor<1, dim>> &values,
std::vector<Tensor<2, dim>> &grads,
// polynomial at the given point.
template <int dim>
void
-PolynomialsNedelec<dim>::compute(
+PolynomialsNedelec<dim>::evaluate(
const Point<dim> & unit_point,
std::vector<Tensor<1, dim>> &values,
std::vector<Tensor<2, dim>> &grads,
template <int dim>
void
-PolynomialsRaviartThomas<dim>::compute(
+PolynomialsRaviartThomas<dim>::evaluate(
const Point<dim> & unit_point,
std::vector<Tensor<1, dim>> &values,
std::vector<Tensor<2, dim>> &grads,
template <int dim>
void
-PolynomialsRT_Bubbles<dim>::compute(
+PolynomialsRT_Bubbles<dim>::evaluate(
const Point<dim> & unit_point,
std::vector<Tensor<1, dim>> &values,
std::vector<Tensor<2, dim>> &grads,
p_grad_grads.resize((grad_grads.size() == 0) ? 0 : n_sub);
// This is the Raviart-Thomas part of the space
- raviart_thomas_space.compute(unit_point,
- p_values,
- p_grads,
- p_grad_grads,
- p_third_derivatives,
- p_fourth_derivatives);
+ raviart_thomas_space.evaluate(unit_point,
+ p_values,
+ p_grads,
+ p_grad_grads,
+ p_third_derivatives,
+ p_fourth_derivatives);
for (unsigned int i = 0; i < p_values.size(); ++i)
values[i] = p_values[i];
for (unsigned int i = 0; i < p_grads.size(); ++i)
std::vector<Tensor<4, dim>> dummy1;
std::vector<Tensor<5, dim>> dummy2;
- poly_space->compute(
+ poly_space->evaluate(
p, cached_values, cached_grads, cached_grad_grads, dummy1, dummy2);
}
std::vector<Tensor<4, dim>> dummy1;
std::vector<Tensor<5, dim>> dummy2;
- poly_space->compute(
+ poly_space->evaluate(
p, cached_values, cached_grads, cached_grad_grads, dummy1, dummy2);
}
std::vector<Tensor<4, dim>> dummy1;
std::vector<Tensor<5, dim>> dummy2;
- poly_space->compute(
+ poly_space->evaluate(
p, cached_values, cached_grads, cached_grad_grads, dummy1, dummy2);
}