#include <fstream>
#include <sstream>
-#include <boost/bind.hpp>
+#include <base/std_cxx1x/bind.h>
using namespace dealii;
for(unsigned int i=0; i<dofs_per_cell/n_comp; ++i)
{
const unsigned int ni = n_comp* i;
- const unsigned int i0 = mg_dof_indices[ni];
- const unsigned int i1 = mg_dof_indices[ni+1];
- const unsigned int i2 = mg_dof_indices[ni+2];
+ const unsigned int i0 = mg_dof_indices[ni];
+ const unsigned int i1 = mg_dof_indices[ni+1];
+ const unsigned int i2 = mg_dof_indices[ni+2];
diff(i0) = 2*v(i0) - v(i1);
diff(i1) = 3*v(i1) - 2*v(i2);
diff(i2) = v(i2) - 3*v(i0);
{
const FEValuesBase<dim>& fe = info.fe_values();
const std::vector<std::vector<double> >& uh = info.values[0];
-
+
const unsigned int square_root = std::pow(fe.n_quadrature_points, 1./dim)+.5;
for (unsigned int k1=0; k1<square_root; ++k1)
{
template <int dim>
-class LaplaceProblem
+class LaplaceProblem
{
public:
typedef typename MeshWorker::IntegrationWorker<dim>::CellInfo CellInfo;
void setup_system ();
void test ();
void test_boundary ();
- void output_gpl(const MGDoFHandler<dim> &dof,
+ void output_gpl(const MGDoFHandler<dim> &dof,
MGLevelObject<Vector<double> > &v);
void refine_local ();
template <int dim>
void
-LaplaceProblem<dim>::output_gpl(const MGDoFHandler<dim> &dof,
+LaplaceProblem<dim>::output_gpl(const MGDoFHandler<dim> &dof,
MGLevelObject<Vector<double> > &v)
{
MeshWorker::IntegrationWorker<dim> integration_worker;
for(unsigned int l=0; l<triangulation.n_levels(); ++l)
{
diff(d[l], mg_dof_handler_renumbered, u[l],l);
- deallog << l << " " << u[l].l2_norm() << '\t'
+ deallog << l << " " << u[l].l2_norm() << '\t'
<< d[l].l2_norm()<< std::endl;
for(unsigned int i=0; i<d[l].size(); ++i)
if(d[l](i)!=0)
#include <fstream>
#include <sstream>
-#include <boost/bind.hpp>
+#include <base/std_cxx1x/bind.h>
using namespace dealii;
for(unsigned int i=0; i<dofs_per_cell/n_comp; ++i)
{
const unsigned int ni = n_comp* i;
- const unsigned int i0 = mg_dof_indices[ni];
- const unsigned int i1 = mg_dof_indices[ni+1];
- const unsigned int i2 = mg_dof_indices[ni+2];
+ const unsigned int i0 = mg_dof_indices[ni];
+ const unsigned int i1 = mg_dof_indices[ni+1];
+ const unsigned int i2 = mg_dof_indices[ni+2];
diff(i0) = 2*v(i0) - v(i1);
diff(i1) = 3*v(i1) - 2*v(i2);
diff(i2) = v(i2) - 3*v(i0);
{
const FEValuesBase<dim>& fe = info.fe_values();
const std::vector<std::vector<double> >& uh = info.values[0];
-
+
const unsigned int square_root = std::pow(fe.n_quadrature_points, 1./dim)+.5;
for (unsigned int k1=0; k1<square_root; ++k1)
{
template <int dim>
-class LaplaceProblem
+class LaplaceProblem
{
public:
typedef typename MeshWorker::IntegrationWorker<dim>::CellInfo CellInfo;
private:
void setup_system ();
void test ();
- void output_gpl(const MGDoFHandler<dim> &dof,
+ void output_gpl(const MGDoFHandler<dim> &dof,
MGLevelObject<Vector<double> > &v);
void refine_local ();
template <int dim>
void
-LaplaceProblem<dim>::output_gpl(const MGDoFHandler<dim> &dof,
+LaplaceProblem<dim>::output_gpl(const MGDoFHandler<dim> &dof,
MGLevelObject<Vector<double> > &v)
{
MeshWorker::IntegrationWorker<dim> integration_worker;
for(unsigned int l=0; l<triangulation.n_levels(); ++l)
{
diff(d[l], mg_dof_handler_renumbered, u[l],l);
- deallog << l << " " << u[l].l2_norm() << '\t' << v[l].l2_norm() << '\t'
+ deallog << l << " " << u[l].l2_norm() << '\t' << v[l].l2_norm() << '\t'
<< d[l].l2_norm()<< std::endl;
for(unsigned int i=0; i<d[l].size(); ++i)
if(d[l](i)!=0)