]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Optimize SparseMatrix in multithreaded mode, when only one thread is required.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Wed, 13 Nov 2002 19:15:58 +0000 (19:15 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Wed, 13 Nov 2002 19:15:58 +0000 (19:15 +0000)
git-svn-id: https://svn.dealii.org/trunk@6760 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/doc/news/2002/c-3-4.html
deal.II/lac/include/lac/sparse_matrix.templates.h

index 08517d935ac288ff703dd84fa881b83ad04d9fd8..eb1b40b48f6a5dc3962488571ddee43a350841f7 100644 (file)
@@ -332,6 +332,20 @@ contributor's names are abbreviated by WB (Wolfgang Bangerth), GK
 <h3>lac</h3>
 
 <ol>
+  <li> <p>
+       Changed: In multithread mode, the <code
+       class="class">SparseMatrix</code> would spawn
+       <code>multithread_info.n_default_threads</code> threads to
+       perform matrix-vector multiplications and similar
+       operations. It would even do so if
+       <code>multithread_info.n_default_threads</code> was equal to
+       one. In that case, we now do the operation on the thread we are
+       presently on, eliminating the overhead of spawning a single
+       thread, and later waiting and terminating it.
+       <br>
+       (WB 2002/11/13)
+       </p>
   <li> <p>
        Fixed: In the <code class="class">SparseDirectMA27</code> class, wrapping 
        the MA27 solver written in Fortran77 into some structure amenable to C++,
index 9a1cca16976cbe77019e2b194431cf2e06c7c617..689d935d5ade1918613b8689b37ace1554eab068 100644 (file)
 #include <functional>
 #include <cmath>
 
-#ifdef DEAL_II_USE_MT
-#  include <vector>
-#  include <numeric>
-
-#  include <base/thread_management.h>
-#  include <base/multithread_info.h>
-#endif
+#include <vector>
+#include <numeric>
 
+#include <base/thread_management.h>
+#include <base/multithread_info.h>
 
 
 
@@ -288,11 +285,13 @@ SparseMatrix<number>::vmult (Vector<somenumber>& dst,
   
   const unsigned int n_rows = m();
 
-#ifdef DEAL_II_USE_MT
-                                  // in MT mode: start new threads only
-                                  // if the matrix is sufficiently large.
-                                  // the limit is mostly artificial
-  if (n_rows/multithread_info.n_default_threads > 2000)
+                                  // in MT mode: start new threads
+                                  // only if the matrix is
+                                  // sufficiently large.  the limit
+                                  // is mostly artificial
+  if (DEAL_II_USE_MT &&
+      (multithread_info.n_default_threads > 1) &&
+      (n_rows/multithread_info.n_default_threads > 2000))
     {
       const unsigned int n_threads = multithread_info.n_default_threads;
 
@@ -326,21 +325,22 @@ SparseMatrix<number>::vmult (Vector<somenumber>& dst,
       thread_manager.wait ();
 
       return;
-    };
-#endif
-
-                                  // if not in MT mode or size<2000
-                                  // do it in an oldfashioned way
-  const number       *val_ptr    = &val[cols->rowstart[0]];
-  const unsigned int *colnum_ptr = &cols->colnums[cols->rowstart[0]];
-  somenumber         *dst_ptr    = &dst(0);
-  for (unsigned int row=0; row<n_rows; ++row)
+    }
+  else
     {
-      somenumber s = 0.;
-      const number *const val_end_of_row = &val[cols->rowstart[row+1]];
-      while (val_ptr != val_end_of_row)
-       s += *val_ptr++ * src(*colnum_ptr++);
-      *dst_ptr++ = s;
+                                      // if not in MT mode or size<2000
+                                      // do it in an oldfashioned way
+      const number       *val_ptr    = &val[cols->rowstart[0]];
+      const unsigned int *colnum_ptr = &cols->colnums[cols->rowstart[0]];
+      somenumber         *dst_ptr    = &dst(0);
+      for (unsigned int row=0; row<n_rows; ++row)
+       {
+         somenumber s = 0.;
+         const number *const val_end_of_row = &val[cols->rowstart[row+1]];
+         while (val_ptr != val_end_of_row)
+           s += *val_ptr++ * src(*colnum_ptr++);
+         *dst_ptr++ = s;
+       };
     };
 };
 
@@ -453,11 +453,13 @@ SparseMatrix<number>::matrix_norm_square (const Vector<somenumber>& v) const
   Assert(n() == v.size(), ExcDimensionMismatch(n(),v.size()));
 
   const unsigned int n_rows = m();
-#ifdef DEAL_II_USE_MT
+
                                   // if in MT mode and size sufficiently
                                   // large: do it in parallel; the limit
                                   // is mostly artificial
-  if (n_rows/multithread_info.n_default_threads > 2000)
+  if (DEAL_II_USE_MT &&
+      (multithread_info.n_default_threads > 1) &&
+      (n_rows/multithread_info.n_default_threads > 2000))
     {
       const unsigned int n_threads = multithread_info.n_default_threads;
 
@@ -499,24 +501,26 @@ SparseMatrix<number>::matrix_norm_square (const Vector<somenumber>& v) const
       return std::accumulate (partial_sums.begin(),
                              partial_sums.end(),
                              0.);
-    };
-#endif
-                                  // if not in MT mode or the matrix is
-                                  // too small: do it one-by-one
-  somenumber          sum        = 0.;
-  const number       *val_ptr    = &val[cols->rowstart[0]];
-  const unsigned int *colnum_ptr = &cols->colnums[cols->rowstart[0]];
-  for (unsigned int row=0; row<n_rows; ++row)
+    }
+  else
     {
-      somenumber s = 0.;
-      const number *val_end_of_row = &val[cols->rowstart[row+1]];
-      while (val_ptr != val_end_of_row)
-       s += *val_ptr++ * v(*colnum_ptr++);
-
-      sum += s* v(row);
+                                      // if not in MT mode or the matrix is
+                                      // too small: do it one-by-one
+      somenumber          sum        = 0.;
+      const number       *val_ptr    = &val[cols->rowstart[0]];
+      const unsigned int *colnum_ptr = &cols->colnums[cols->rowstart[0]];
+      for (unsigned int row=0; row<n_rows; ++row)
+       {
+         somenumber s = 0.;
+         const number *val_end_of_row = &val[cols->rowstart[row+1]];
+         while (val_ptr != val_end_of_row)
+           s += *val_ptr++ * v(*colnum_ptr++);
+         
+         sum += s* v(row);
+       };
+      
+      return sum;
     };
-
-  return sum;
 };
 
 
@@ -564,11 +568,13 @@ SparseMatrix<number>::matrix_scalar_product (const Vector<somenumber>& u,
   Assert(n() == v.size(), ExcDimensionMismatch(n(),v.size()));
 
   const unsigned int n_rows = m();
-#ifdef DEAL_II_USE_MT
+
                                   // if in MT mode and size sufficiently
                                   // large: do it in parallel; the limit
                                   // is mostly artificial
-  if (n_rows/multithread_info.n_default_threads > 2000)
+  if (DEAL_II_USE_MT &&
+      (multithread_info.n_default_threads != 1) &&
+      (n_rows/multithread_info.n_default_threads > 2000))
     {
       const unsigned int n_threads = multithread_info.n_default_threads;
 
@@ -611,24 +617,26 @@ SparseMatrix<number>::matrix_scalar_product (const Vector<somenumber>& u,
       return std::accumulate (partial_sums.begin(),
                              partial_sums.end(),
                              0.);
-    };
-#endif
-                                  // if not in MT mode or the matrix is
-                                  // too small: do it one-by-one
-  somenumber          sum        = 0.;
-  const number       *val_ptr    = &val[cols->rowstart[0]];
-  const unsigned int *colnum_ptr = &cols->colnums[cols->rowstart[0]];
-  for (unsigned int row=0; row<n_rows; ++row)
+    }
+  else
     {
-      somenumber s = 0.;
-      const number *val_end_of_row = &val[cols->rowstart[row+1]];
-      while (val_ptr != val_end_of_row)
-       s += *val_ptr++ * v(*colnum_ptr++);
-
-      sum += s* u(row);
+                                      // if not in MT mode or the matrix is
+                                      // too small: do it one-by-one
+      somenumber          sum        = 0.;
+      const number       *val_ptr    = &val[cols->rowstart[0]];
+      const unsigned int *colnum_ptr = &cols->colnums[cols->rowstart[0]];
+      for (unsigned int row=0; row<n_rows; ++row)
+       {
+         somenumber s = 0.;
+         const number *val_end_of_row = &val[cols->rowstart[row+1]];
+         while (val_ptr != val_end_of_row)
+           s += *val_ptr++ * v(*colnum_ptr++);
+         
+         sum += s* u(row);
+       };
+      
+      return sum;
     };
-
-  return sum;
 };
 
 
@@ -720,11 +728,13 @@ SparseMatrix<number>::residual (Vector<somenumber>       &dst,
   Assert(n() == u.size(), ExcDimensionMismatch(n(),u.size()));
 
   const unsigned int n_rows = m();
-#ifdef DEAL_II_USE_MT
+
                                   // if in MT mode and size sufficiently
                                   // large: do it in parallel; the limit
                                   // is mostly artificial
-  if (n_rows/multithread_info.n_default_threads > 2000)
+  if (DEAL_II_USE_MT &&
+      (multithread_info.n_default_threads > 1) &&
+      (n_rows/multithread_info.n_default_threads > 2000))
     {
       const unsigned int n_threads = multithread_info.n_default_threads;
  
@@ -768,23 +778,24 @@ SparseMatrix<number>::residual (Vector<somenumber>       &dst,
       return std::sqrt(std::accumulate (partial_norms.begin(),
                                        partial_norms.end(),
                                        0.));
-    };
-#endif
-  
-  somenumber norm=0.;   
-  
-  for (unsigned int i=0; i<n_rows; ++i)
+    }
+  else
     {
-      somenumber s = b(i);
-      for (unsigned int j=cols->rowstart[i]; j<cols->rowstart[i+1] ;j++)
+      somenumber norm=0.;   
+  
+      for (unsigned int i=0; i<n_rows; ++i)
        {
-         const unsigned int p = cols->colnums[j];
-         s -= val[j] * u(p);
+         somenumber s = b(i);
+         for (unsigned int j=cols->rowstart[i]; j<cols->rowstart[i+1] ;j++)
+           {
+             const unsigned int p = cols->colnums[j];
+             s -= val[j] * u(p);
+           }
+         dst(i) = s;
+         norm += dst(i)*dst(i);
        }
-      dst(i) = s;
-      norm += dst(i)*dst(i);
-    }
-  return std::sqrt(norm);
+      return std::sqrt(norm);
+    };
 }
 
 
@@ -797,10 +808,10 @@ SparseMatrix<number>::threaded_residual (Vector<somenumber>       &dst,
                                         const std::pair<unsigned int, unsigned int> interval,
                                         somenumber               *partial_norm) const
 {
+#ifdef DEAL_II_USE_MT
   const unsigned int begin_row = interval.first,
                     end_row   = interval.second;
   
-#ifdef DEAL_II_USE_MT
   somenumber norm=0.;   
   
   for (unsigned int i=begin_row; i<end_row; ++i)

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.