void
add_new_points (const ArrayView<const Point<spacedim>> &surrounding_points,
const Table<2,double> &weights,
- ArrayView<Point<spacedim>> new_points) const;
+ ArrayView<Point<spacedim>> new_points) const override;
/**
* Project to FlatManifold. This is the identity function for flat,
virtual
Point<spacedim>
project_to_manifold (const ArrayView<const Point<spacedim>> &points,
- const Point<spacedim> &candidate) const;
+ const Point<spacedim> &candidate) const override;
/**
* Return a vector that, at $\mathbf x_1$, is tangential to
virtual
Tensor<1,spacedim>
get_tangent_vector (const Point<spacedim> &x1,
- const Point<spacedim> &x2) const;
+ const Point<spacedim> &x2) const override;
/**
* Return the periodicity of this Manifold.
void
add_new_points (const ArrayView<const Point<spacedim>> &surrounding_points,
const Table<2,double> &weights,
- ArrayView<Point<spacedim>> new_points) const;
+ ArrayView<Point<spacedim>> new_points) const override;
/**
* Pull back the given point in spacedim to the Euclidean chartdim
* dimensional space.
virtual
Tensor<1,spacedim>
get_tangent_vector (const Point<spacedim> &x1,
- const Point<spacedim> &x2) const;
+ const Point<spacedim> &x2) const override;
/**
* Return the periodicity associated with the submanifold.
Point<spacedim>
get_intermediate_point(const Point<spacedim> &p1,
const Point<spacedim> &p2,
- const double w) const;
+ const double w) const override;
/**
* Compute the derivative of the get_intermediate_point() function
virtual
Tensor<1,spacedim>
get_tangent_vector (const Point<spacedim> &x1,
- const Point<spacedim> &x2) const;
+ const Point<spacedim> &x2) const override;
/**
* Return a point on the spherical manifold which is intermediate
void
add_new_points (const ArrayView<const Point<spacedim>> &surrounding_points,
const Table<2,double> &weights,
- ArrayView<Point<spacedim>> new_points) const;
+ ArrayView<Point<spacedim>> new_points) const override;
private:
/**