]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Properly align formula.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Thu, 24 Jun 2010 13:18:38 +0000 (13:18 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Thu, 24 Jun 2010 13:18:38 +0000 (13:18 +0000)
git-svn-id: https://svn.dealii.org/trunk@21314 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-45/doc/intro.dox

index 47e175733f6c20ce70eb8807075c121887ffafaf..96a5c1d76e7f226ef6d381b364937cdcf51d434a 100644 (file)
@@ -30,13 +30,13 @@ left and right parts of the boundary are identified. Let $\Omega=(0,1)^2$ and
 consider the problem
 @f{align*}
    -\Delta u &=
-   \cos(2\pi x)e^{-2x}\cos(2\pi y)e^{-2y}  \qquad &\text{in }\Omega
+   \cos(2\pi x)e^{-2x}\cos(2\pi y)e^{-2y}  \qquad &&\text{in }\Omega
   \\ 
-   u(x,0) &= 0 \qquad &\text{for }x\in(0,1)\qquad &&\text{(bottom boundary)}
+   u(x,0) &= 0 \qquad &&\text{for }x\in(0,1)\qquad &&\text{(bottom boundary)}
   \\
-   u(x,1) &= 0 \qquad &\text{for }x\in(0,1)\qquad &&\text{(top boundary)}
+   u(x,1) &= 0 \qquad &&\text{for }x\in(0,1)\qquad &&\text{(top boundary)}
   \\
-   u(0,y) &= u(1,y) \qquad &\text{for }y\in(0,1) 
+   u(0,y) &= u(1,y) \qquad &&\text{for }y\in(0,1) 
    \qquad && \text{(left and right boundaries)}
 @f}
 Note that the source term is not symmetric and so the solution would not be

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.