--- /dev/null
+// ---------------------------------------------------------------------
+//
+// Copyright (C) 2013 - 2018 by the deal.II authors
+//
+// This file is part of the deal.II library.
+//
+// The deal.II library is free software; you can use it, redistribute
+// it, and/or modify it under the terms of the GNU Lesser General
+// Public License as published by the Free Software Foundation; either
+// version 2.1 of the License, or (at your option) any later version.
+// The full text of the license can be found in the file LICENSE.md at
+// the top level directory of deal.II.
+//
+// ---------------------------------------------------------------------
+
+
+// Test InterpolatedUniformGridData::gradient
+
+#include <deal.II/base/function_lib.h>
+
+#include "../tests.h"
+
+// now interpolate the function x*y*z onto points. note that this function is
+// (bi/tri)linear and so we can later know what the correct value is that the
+// function should provide
+Table<1, double>
+fill(const std::array<std::vector<double>, 1> &coordinates)
+{
+ Table<1, double> data(coordinates[0].size());
+ for (unsigned int i = 0; i < coordinates[0].size(); ++i)
+ data[i] = coordinates[0][i];
+ return data;
+}
+
+Table<2, double>
+fill(const std::array<std::vector<double>, 2> &coordinates)
+{
+ Table<2, double> data(coordinates[0].size(), coordinates[1].size());
+ for (unsigned int i = 0; i < coordinates[0].size(); ++i)
+ for (unsigned int j = 0; j < coordinates[1].size(); ++j)
+ data[i][j] = coordinates[0][i] * coordinates[1][j];
+ return data;
+}
+
+Table<3, double>
+fill(const std::array<std::vector<double>, 3> &coordinates)
+{
+ Table<3, double> data(coordinates[0].size(),
+ coordinates[1].size(),
+ coordinates[2].size());
+ for (unsigned int i = 0; i < coordinates[0].size(); ++i)
+ for (unsigned int j = 0; j < coordinates[1].size(); ++j)
+ for (unsigned int k = 0; k < coordinates[2].size(); ++k)
+ data[i][j][k] =
+ coordinates[0][i] * coordinates[1][j] * coordinates[2][k];
+ return data;
+}
+
+
+template <int dim>
+void
+check()
+{
+ // have coordinate arrays that span an interval starting at d+1
+ // d+5 nonuniform intervals
+ std::array<std::pair<double, double>, dim> intervals;
+ std::array<unsigned int, dim> n_subintervals;
+ for (unsigned int d = 0; d < dim; ++d)
+ {
+ intervals[d] = std::make_pair(d + 2., 2 * d + 5.);
+ n_subintervals[d] = d + 1 + d * d;
+ }
+
+ std::array<std::vector<double>, dim> coordinates;
+ for (unsigned int d = 0; d < dim; ++d)
+ {
+ const double x = intervals[d].first;
+ const double dx =
+ (intervals[d].second - intervals[d].first) / n_subintervals[d];
+
+ for (unsigned int i = 0; i < n_subintervals[d] + 1; ++i)
+ coordinates[d].push_back(x + dx * i);
+ }
+
+ const Table<dim, double> data = fill(coordinates);
+
+ Functions::InterpolatedUniformGridData<dim> f(intervals,
+ n_subintervals,
+ data);
+
+ // now choose a number of randomly chosen points inside the box and
+ // verify that the functions returned are correct
+ for (unsigned int i = 0; i < 10; ++i)
+ {
+ Point<dim> p;
+ for (unsigned int d = 0; d < dim; ++d)
+ p[d] =
+ coordinates[d][0] + (random_value<double>()) *
+ (coordinates[d].back() - coordinates[d][0]);
+
+ // The function is x*y*z, so we can compute the gradient pretty easily
+ Tensor<1, dim> exact_gradient;
+ for (unsigned int d = 0; d < dim; ++d)
+ {
+ exact_gradient[d] = 1;
+ for (unsigned int e = 0; e < dim; ++e)
+ if (e != d)
+ exact_gradient[d] *= p[e];
+ }
+
+ AssertThrow((exact_gradient - f.gradient(p)).norm() < 1e-12,
+ ExcInternalError());
+ }
+
+ deallog << "OK" << std::endl;
+}
+
+
+
+int
+main()
+{
+ initlog();
+
+ check<1>();
+ check<2>();
+ check<3>();
+}