]> https://gitweb.dealii.org/ - dealii.git/commitdiff
variable directions
authorGuido Kanschat <dr.guido.kanschat@gmail.com>
Mon, 12 Mar 2001 00:07:28 +0000 (00:07 +0000)
committerGuido Kanschat <dr.guido.kanschat@gmail.com>
Mon, 12 Mar 2001 00:07:28 +0000 (00:07 +0000)
git-svn-id: https://svn.dealii.org/trunk@4183 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/base/include/base/function_derivative.h
deal.II/base/source/function_derivative.cc

index bffcabc2c71c7fec8aaab41aef3baf4001ef8054..714a65af859eafed0b1823867745a02d2921b8d0 100644 (file)
@@ -49,19 +49,39 @@ class FunctionDerivative : public Function<dim>
 
                                     /**
                                      * Constructor. Provided are the
-                                     * function to compute derivatives
-                                     * of and the direction vector of
-                                     * the differentiation.
+                                     * function to compute
+                                     * derivatives of, the direction
+                                     * vector of the differentiation
+                                     * and the step size @p{h} of the
+                                     * difference formula.
                                      */
     FunctionDerivative (const Function<dim>& f,
-                       const Point<dim>& direction);
+                       const Point<dim>& direction,
+                       const double h = 1.e-6);
     
                                     /**
-                                     * Set step size of the difference
-                                     * formula. This is set to the
-                                     * default in the constructor.
+                                     * Constructor. Provided are the
+                                     * function to compute
+                                     * derivatives of and the
+                                     * direction vector of the
+                                     * differentiation in each
+                                     * quadrature point and the
+                                     * difference step size.
+                                     *
+                                     * This is the constructor for a
+                                     * variable velocity field. Most
+                                     * probably, a new object of
+                                     * @p{FunctionDerivative} has to
+                                     * be constructed for each set of
+                                     * quadrature points.
+                                     *
+                                     * The number of quadrature point
+                                     * must still be the same, when
+                                     * values are accessed.
                                      */
-    void set_h (double h_new = 1.e-6);
+    FunctionDerivative (const Function<dim>& f,
+                       const vector<Point<dim> >& direction,
+                       const double h = 1.e-6);
     
                                     /**
                                      * Choose the difference formula.
@@ -109,17 +129,12 @@ class FunctionDerivative : public Function<dim>
     unsigned int memory_consumption () const;
     
     DeclException0(ExcInvalidFormula);
-    
   private:
                                     /**
                                      * Function for differentiation.
                                      */
     const Function<dim>& f;
-                                    /**
-                                     * Differentiation vector.
-                                     */
-    Point<dim> direction;
-    
+
                                     /**
                                      * Step size of the difference formula.
                                      */
@@ -133,7 +148,7 @@ class FunctionDerivative : public Function<dim>
                                      * increment vector for the
                                      * formula.
                                      */
-    Point<dim> incr;
+    vector<Point<dim> > incr;
 };
 
 #endif
index be2607c6f46e88e8e67d60efbc0b778f059d4741..ada97de27594326963df46b39cdf4b1cb1eed71f 100644 (file)
 
 template <int dim>
 FunctionDerivative<dim>::FunctionDerivative (const Function<dim>& f,
-                                            const Point<dim>& dir)
+                                            const Point<dim>& dir,
+                                            const double h)
                :
                Function<dim> (f.n_components, f.get_time()),
   f(f),
-  direction(dir)
+  h(h),
+  incr(1, h*dir)
 {
-  set_h();
   set_formula();
 }
 
 
 
 template <int dim>
-void
-FunctionDerivative<dim>::set_h (double h_new)
+FunctionDerivative<dim>::FunctionDerivative (const Function<dim>& f,
+                                            const vector<Point<dim> >& dir,
+                                            const double h)
+               :
+               Function<dim> (f.n_components, f.get_time()),
+  f(f),
+  h(h),
+  incr(dir.size())
 {
-  h = h_new;
-  incr = h*direction;
+  for (unsigned int i=0;i<incr.size ();++i)
+    incr[i] = h*dir[i];
+  set_formula();
 }
 
 
@@ -55,15 +63,18 @@ double
 FunctionDerivative<dim>::value (const Point<dim>   &p,
                                const unsigned int  component) const
 {
+  Assert (incr.size() == 1,
+         ExcMessage ("FunctionDerivative was not initialized for constant direection"));
+
   switch (formula)
     {
       case Euler:
-           return (f.value(p+incr, component)-f.value(p-incr, component))/(2*h);
+           return (f.value(p+incr[0], component)-f.value(p-incr[0], component))/(2*h);
       case UpwindEuler:
-           return (f.value(p, component)-f.value(p-incr, component))/h;
+           return (f.value(p, component)-f.value(p-incr[0], component))/h;
       case FourthOrder:
-           return (-f.value(p+2*incr, component) + 8*f.value(p+incr, component)
-                   -8*f.value(p-incr, component) + f.value(p-2*incr, component))/(12*h);
+           return (-f.value(p+2*incr[0], component) + 8*f.value(p+incr[0], component)
+                   -8*f.value(p-incr[0], component) + f.value(p-2*incr[0], component))/(12*h);
       default:
            Assert(false, ExcInvalidFormula());
     }
@@ -77,6 +88,7 @@ FunctionDerivative<dim>::value (const Point<dim>   &p,
 using namespace std;
 #endif
 
+//TODO:Optimize construction of vectors!
 
 template <int dim>
 void
@@ -85,7 +97,11 @@ FunctionDerivative<dim>::value_list (const typename std::vector<Point<dim> > &po
                                     const unsigned int              component) const
 {
   const unsigned int n = points.size();
-  
+  bool variable_direction = (incr.size() == 1) ? false : true;
+  if (variable_direction)
+    Assert (incr.size() == points.size(),
+           ExcDimensionMismatch(incr.size(), points.size()));
+
   switch (formula)
     {
       case Euler:
@@ -95,8 +111,9 @@ FunctionDerivative<dim>::value_list (const typename std::vector<Point<dim> > &po
        std::vector<double> e2(n);
        for (unsigned int i=0;i<n;++i)
          {
-           p1[i] = points[i]+incr;
-           p2[i] = points[i]-incr;
+           const unsigned int j = (variable_direction) ? i:0;
+           p1[i] = points[i]+incr[j];
+           p2[i] = points[i]-incr[j];
          }
        f.value_list(p1, values, component);
        f.value_list(p2, e2, component);
@@ -112,7 +129,10 @@ FunctionDerivative<dim>::value_list (const typename std::vector<Point<dim> > &po
        std::vector<Point<dim> > p2(n);
        std::vector<double> e2(n);
        for (unsigned int i=0;i<n;++i)
-         p2[i] = points[i]-incr;
+         {
+           const unsigned int j = (variable_direction) ? i:0;
+           p2[i] = points[i]-incr[j];
+         }
        f.value_list(points, values, component);
        f.value_list(p2, e2, component);
        for (unsigned int i=0;i<n;++i)
@@ -130,10 +150,11 @@ FunctionDerivative<dim>::value_list (const typename std::vector<Point<dim> > &po
        std::vector<double> e_m(n);
        for (unsigned int i=0;i<n;++i)
          {
-           p_p[i] = points[i]+incr;
-           p_pp[i] = p_p[i]+incr;
-           p_m[i] = points[i]-incr;
-           p_mm[i] = p_m[i]-incr;
+           const unsigned int j = (variable_direction) ? i:0;
+           p_p[i] = points[i]+incr[j];
+           p_pp[i] = p_p[i]+incr[j];
+           p_m[i] = points[i]-incr[j];
+           p_mm[i] = p_m[i]-incr[j];
          }
        f.value_list(p_mm, values, component);
        f.value_list(p_pp, e_pp, component);

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.