]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Improved Documentation.
authorLuca Heltai <luca.heltai@sissa.it>
Fri, 22 Dec 2017 18:29:30 +0000 (19:29 +0100)
committerLuca Heltai <luca.heltai@sissa.it>
Fri, 29 Dec 2017 11:15:14 +0000 (12:15 +0100)
include/deal.II/base/quadrature_lib.h

index 6ac9a23e3a6dad4c58dc10fbdd24612eaa17a54a..fc8e5969123d22b13a909834ff2b9f377ef3f727 100644 (file)
@@ -763,13 +763,17 @@ public:
  * \hat x^\beta \hat y
  * end{pmatrix}
  * \f]
+ *
  * with determinant of the Jacobian equal to $J= \beta \hat \x^{2\beta-1}$.
  * Such transformation maps the reference square \$[0,1]\times[0,1]$ to the
- * reference simplex, by collapsing the left \side of the square and
- * squeezing quadrature points towards the orgin, and then shearing the
- * resulting triangle to the reference one. This transformation, allows
- * one to integrate singularities of order $1/R$ in the origin when $\beta =
- * 1$, and higher when $1 < \beta \leq 2$.
+ * reference simplex, by collapsing the left \side of the square and squeezing
+ * quadrature points towards the orgin, and then shearing the resulting
+ * triangle to the reference one. This transformation shows good convergence
+ * properties when $\beta = 1$ with singularities of order $1/R$ in the origin,
+ * but different $\beta$ values can be selected to increase convergence and/or
+ * accuracy when higher order Gauss rules are used (see "Generalized Duffy
+ * transformation for integrating vertex singularities", S. E. Mousavi, N.
+ * Sukumar, Computational Mechanics 2009).
  *
  * When $\beta = 1$, this transformation is also known as the Lachat-Watson
  * transformation.

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.