]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
One more optimization in initialize_embedding.
authorkronbichler <kronbichler@0785d39b-7218-0410-832d-ea1e28bc413d>
Mon, 1 Jun 2009 05:23:33 +0000 (05:23 +0000)
committerkronbichler <kronbichler@0785d39b-7218-0410-832d-ea1e28bc413d>
Mon, 1 Jun 2009 05:23:33 +0000 (05:23 +0000)
git-svn-id: https://svn.dealii.org/trunk@18896 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/source/fe/fe_q.cc

index efac63e855f6a13d5025968173acd6c5194fdb2b..a01778f3730a870de2a8444c0aa98606a7c87a71 100644 (file)
@@ -1517,17 +1517,17 @@ template <int dim, int spacedim>
 void
 FE_Q<dim,spacedim>::initialize_embedding ()
 {
-                                  // compute the interpolation matrices
-                                  // in much the same way as we do for
-                                  // the constraints. it's actually
-                                  // simpler here, since we don't have
-                                  // this weird renumbering stuff going
-                                  // on. The trick is again that we the
-                                  // interpolation matrix is formed by
-                                  // a permutation of the indices of
-                                  // the cell matrix.
-  FullMatrix<double> cell_interpolation (this->dofs_per_cell,
-                                        this->dofs_per_cell);
+                                  // compute the interpolation matrices in
+                                  // much the same way as we do for the
+                                  // constraints. it's actually simpler
+                                  // here, since we don't have this weird
+                                  // renumbering stuff going on. The trick
+                                  // is again that we the interpolation
+                                  // matrix is formed by a permutation of
+                                  // the indices of the cell matrix. The
+                                  // value eps is used a threshold to
+                                  // decide when certain evaluations of the
+                                  // Lagrange polynomials are zero or one.
   const std::vector<unsigned int> &index_map=
     this->poly_space.get_numbering();
 
@@ -1536,16 +1536,15 @@ FE_Q<dim,spacedim>::initialize_embedding ()
   unsigned n_ones = 0;
                                   // precompute subcell interpolation
                                   // information, which will give us a
-                                  // vector of permutations. it
-                                  // actually is a matrix (the inverse
-                                  // of which we'd need to multiply the
-                                  // celL interpolation matrix with),
-                                  // but since we use Lagrangian basis
-                                  // functions here, we know that each
-                                  // basis function will just one at
-                                  // one node and zero on all the
-                                  // others. this makes this process
-                                  // much cheaper.
+                                  // vector of permutations. it actually is
+                                  // a matrix (the inverse of which we'd
+                                  // need to multiply the celL
+                                  // interpolation matrix with), but since
+                                  // we use Lagrangian basis functions
+                                  // here, we know that each basis function
+                                  // will just one at one node and zero on
+                                  // all the others. this makes this
+                                  // process much cheaper.
   std::vector<unsigned int> subcell_permutations (this->dofs_per_cell,
                                                  deal_II_numbers::invalid_unsigned_int);
   for (unsigned int i=0; i<this->dofs_per_cell; ++i)
@@ -1560,6 +1559,9 @@ FE_Q<dim,spacedim>::initialize_embedding ()
        if (std::fabs(subcell_value-1) < eps)
          {
            subcell_permutations[i] = j;
+                                  // in debug mode, still want to check
+                                  // whether we're not getting any strange
+                                  // results with more than one 1 per row.
 #ifndef DEBUG
            break;
 #else
@@ -1571,29 +1573,26 @@ FE_Q<dim,spacedim>::initialize_embedding ()
                  ExcInternalError());
       }
                                             // make sure that we only
-                                            // extracted a single one
-                                            // per row, and that each
-                                            // row actually got one
-                                            // value
+                                            // extracted a single one per
+                                            // row, and that each row
+                                            // actually got one value
   Assert (n_ones == this->dofs_per_cell,
          ExcDimensionMismatch(n_ones, this->dofs_per_cell));
   for (unsigned int i=0; i<this->dofs_per_cell; ++i)
     Assert (subcell_permutations[i] < this->dofs_per_cell,
            ExcInternalError());
 
-                                            // next evaluate the
-                                            // functions for the
-                                            // different refinement
+                                            // next evaluate the functions
+                                            // for the different refinement
                                             // cases.
   for (unsigned int ref=0; ref<RefinementCase<dim>::isotropic_refinement; ++ref)
     for (unsigned int child=0; child<GeometryInfo<dim>::n_children(RefinementCase<dim>(ref+1)); ++child)
       {
        for (unsigned int j=0; j<this->dofs_per_cell; ++j)
          {
-                                            // generate a point on
-                                            // the child cell and
-                                            // evaluate the shape
-                                            // functions there
+                                            // generate a point on the
+                                            // child cell and evaluate the
+                                            // shape functions there
            const Point<dim> p_subcell
              = FE_Q_Helper::generate_unit_point (index_map[j], this->dofs_per_cell,
                                                  dealii::internal::int2type<dim>());
@@ -1606,59 +1605,44 @@ FE_Q<dim,spacedim>::initialize_embedding ()
                const double
                  cell_value    = this->poly_space.compute_value (i, p_cell);
 
-                                                // cut off values that are
-                                                // too small. note that we
-                                                // have here Lagrange
-                                                // interpolation functions,
-                                                // so they should be zero
-                                                // at almost all points,
-                                                // and one at the others,
-                                                // at least on the
-                                                // subcells. so set them to
-                                                // their exact values
-                                                //
-                                                // the actual cut-off value
-                                                // is somewhat fuzzy, but
-                                                // it works for
-                                                // 2e-13*degree^2*dim (see
-                                                // above), which is kind of
-                                                // reasonable given that we
-                                                // compute the values of
-                                                // the polynomials via an
-                                                // degree-step recursion
-                                                // and then multiply the
-                                                // 1d-values. this gives us
-                                                // a linear growth in
-                                                // degree*dim, times a
-                                                // small constant.
+                                  // cut off values that are too
+                                  // small. note that we have here Lagrange
+                                  // interpolation functions, so they
+                                  // should be zero at almost all points,
+                                  // and one at the others, at least on the
+                                  // subcells. so set them to their exact
+                                  // values
+                                  //
+                                  // the actual cut-off value is somewhat
+                                  // fuzzy, but it works for
+                                  // 2e-13*degree^2*dim (see above), which
+                                  // is kind of reasonable given that we
+                                  // compute the values of the polynomials
+                                  // via an degree-step recursion and then
+                                  // multiply the 1d-values. this gives us
+                                  // a linear growth in degree*dim, times a
+                                  // small constant.
+                                  //
+                                  // the embedding matrix is given by
+                                  // applying the inverse of the subcell
+                                  // matrix on the cell_interpolation
+                                  // matrix. since the subcell matrix is
+                                  // actually only a permutation vector,
+                                  // all we need to do is to switch the
+                                  // rows we write the data into. moreover,
+                                  // cut off very small values here
                if (std::fabs(cell_value) < eps)
-                 cell_interpolation(j, i) = 0.;
+                 this->prolongation[ref][child](subcell_permutations[j],i) = 0;
                else
-                 cell_interpolation(j, i) = cell_value;
+                 this->prolongation[ref][child](subcell_permutations[j],i) = 
+                   cell_value;
              }
          }
 
-                                        // then compute the embedding
-                                        // matrix by applying the
-                                        // inverse of the subcell
-                                        // matrix on the
-                                        // cell_interpolation
-                                        // matrix. since the subcell
-                                        // matrix is actually only a
-                                        // permutation vector, all we
-                                        // need to do is to switch the
-                                        // rows we store. moreover, cut
-                                        // off very small values here
-       for (unsigned int i=0; i<this->dofs_per_cell; ++i)
-         for (unsigned int j=0; j<this->dofs_per_cell; ++j)
-           if (std::fabs(cell_interpolation(i,j)) > eps)
-             this->prolongation[ref][child](subcell_permutations[i],j) = 
-               cell_interpolation(i,j);
-
-                                        // and make sure that the row
-                                        // sum is 1. this must be so
-                                        // since for this element, the
-                                        // shape functions add up to on
+                                  // and make sure that the row sum is
+                                  // 1. this must be so since for this
+                                  // element, the shape functions add up to
+                                  // on
        for (unsigned int row=0; row<this->dofs_per_cell; ++row)
          {
            double sum = 0;

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.