]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Small last fixes
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Thu, 5 Oct 2006 02:36:32 +0000 (02:36 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Thu, 5 Oct 2006 02:36:32 +0000 (02:36 +0000)
git-svn-id: https://svn.dealii.org/trunk@13980 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-23/doc/intro.dox
deal.II/examples/step-23/doc/results.dox
deal.II/examples/step-23/step-23.cc

index 98d7b63baf8135f8257e7ec400d142beaec867cc..de59cf8f978eb81dc8a8e633648db12dbd43ccb5 100644 (file)
@@ -352,7 +352,7 @@ conserve the energy, whereas neither the forward nor the backward Euler scheme
 do. 
 
 
-<h3>Who are Courant, Friedrichs, and Levy?</h3>
+<h3>Who are Courant, Friedrichs, and Lewy?</h3>
 
 One of the reasons why the wave equation is nasty to solve numerically is that
 explicit time discretizations are only stable if the time step is small
index 5a952d04721ccf52c81ea12d03752e7a8c393ced..bffa7272928fb5a8bae45d5213e0073b34e5310b 100644 (file)
@@ -89,7 +89,8 @@ If you want to explore a bit, try out some of the following things:
 
   <li>More complicated domains or more refined meshes. Remember that the time
   step needs to be bounded by the mesh width, so changing the mesh should
-  always involve also changing the time step.
+  always involve also changing the time step. We will come back to this issue
+  in @ref step_24 "step-24".
 
   <li>Variable coefficients: In real media, the wave speed is often
   variable. In particular, the "real" wave equation in realistic media would
index c6c8100970048728e8c4dc47b4313000387b63b1..4e8e48d969428067ba0e534bb0eb901dc7fa7829 100644 (file)
                                 // <code>system_rhs</code> will be
                                 // used for whatever right hand side
                                 // vector we have when solving one of
-                                // the two linear systems we have to
-                                // solve in each time step. These
-                                // will be solved in the two
-                                // functions <code>solve_u</code> and
+                                // the two linear systems in each
+                                // time step. These will be solved in
+                                // the two functions
+                                // <code>solve_u</code> and
                                 // <code>solve_v</code>.
                                 //
                                 // Finally, the variable
                                 // <code>theta</code> is used to
                                 // indicate the parameter $\theta$
                                 // that is used to define which time
-                                // stepping scheme to use. The rest
-                                // is self-explanatory.
+                                // stepping scheme to use, as
+                                // explained in the introduction. The
+                                // rest is self-explanatory.
 template <int dim>
 class WaveEquation 
 {
@@ -180,16 +181,19 @@ class WaveEquation
 
                                 // @sect3{Equation data}
 
-                                // Before we go on filling in the details of
-                                // the main class, let us define the equation
-                                // data corresponding to the problem,
-                                // i.e. initial and boundary values for both
-                                // the solution $u$ as well as its time
-                                // derivative $v$, as well as a right hand
-                                // side class. We do so using classes derived
-                                // from the Function class template that has
-                                // been used many times before, so the
-                                // following should not be a surprise.
+                                // Before we go on filling in the
+                                // details of the main class, let us
+                                // define the equation data
+                                // corresponding to the problem,
+                                // i.e. initial and boundary values
+                                // for both the solution $u$ and its
+                                // time derivative $v$, as well as a
+                                // right hand side class. We do so
+                                // using classes derived from the
+                                // Function class template that has
+                                // been used many times before, so
+                                // the following should not be a
+                                // surprise.
                                 //
                                 // Let's start with initial values
                                 // and choose zero for both the value
@@ -346,7 +350,7 @@ double BoundaryValuesV<dim>::value (const Point<dim> &p,
                                 // Let's start with the constructor (for an
                                 // explanation of the choice of time step,
                                 // see the section on Courant, Friedrichs,
-                                // and Levy in the introduction):
+                                // and Lewy in the introduction):
 template <int dim>
 WaveEquation<dim>::WaveEquation () :
                 fe (1),
@@ -358,12 +362,15 @@ WaveEquation<dim>::WaveEquation () :
 
                                 // @sect4{WaveEquation::setup_system}
 
-                                // The next function is the one that sets up
-                                // the mesh, DoFHandler, and matrices and
-                                // vectors at the beginning of the program,
-                                // i.e. before the first time step. The first
-                                // few lines are pretty much standard if
-                                // you've read at least to step-6:
+                                // The next function is the one that
+                                // sets up the mesh, DoFHandler, and
+                                // matrices and vectors at the
+                                // beginning of the program,
+                                // i.e. before the first time
+                                // step. The first few lines are
+                                // pretty much standard if you've
+                                // read through the tutorial programs
+                                // at least up to step-6:
 template <int dim>
 void WaveEquation<dim>::setup_system ()
 {
@@ -372,7 +379,7 @@ void WaveEquation<dim>::setup_system ()
   
   std::cout << "Number of active cells: "
            << triangulation.n_active_cells()
-           << std::endl;
+            << std::endl;
 
   dof_handler.distribute_dofs (fe);
 
@@ -410,20 +417,24 @@ void WaveEquation<dim>::setup_system ()
                                   // memory on it several times.
                                   //
                                   // After initializing all of these
-                                  // matrices, we call library functions that
-                                  // build the Laplace and mass matrices. All
-                                  // they need is a DoFHandler object and a
-                                  // quadrature formula object that is to be
-                                  // used for numerical integration. Note
-                                  // that in many respect these functions are
-                                  // better than what we would usually do in
-                                  // application programs, as these functions
-                                  // for example automatically parallelize
-                                  // building the matrices if multiple
-                                  // processors are available in a
-                                  // machine. When we have both of these
-                                  // matrices, we form the third one by
-                                  // copying and adding the first two in
+                                  // matrices, we call library
+                                  // functions that build the Laplace
+                                  // and mass matrices. All they need
+                                  // is a DoFHandler object and a
+                                  // quadrature formula object that
+                                  // is to be used for numerical
+                                  // integration. Note that in many
+                                  // respects these functions are
+                                  // better than what we would
+                                  // usually do in application
+                                  // programs, for example because
+                                  // they automatically parallelize
+                                  // building the matrices if
+                                  // multiple processors are
+                                  // available in a machine. When we
+                                  // have both of these matrices, we
+                                  // form the third one by copying
+                                  // and adding the first two in
                                   // appropriate multiples:
   system_matrix.reinit (sparsity_pattern);
   mass_matrix.reinit (sparsity_pattern);
@@ -672,15 +683,19 @@ void WaveEquation<dim>::run ()
       solve_u ();
 
 
-                                      // The second step, i.e. solving for
-                                      // $V^n$, works similarly, except that
-                                      // this time the matrix on the left is
-                                      // the mass matrix, the right hand side
-                                      // is $MV^{n-1} - k\left[ \theta A U^n
-                                      // + (1-\theta) AU^{n-1}\right]$ plus
-                                      // forcing terms. Boundary values are
-                                      // applied in the same way as before,
-                                      // except that now we have to use the
+                                      // The second step,
+                                      // i.e. solving for $V^n$,
+                                      // works similarly, except that
+                                      // this time the matrix on the
+                                      // left is the mass matrix, and
+                                      // the right hand side is
+                                      // $MV^{n-1} - k\left[ \theta A
+                                      // U^n + (1-\theta)
+                                      // AU^{n-1}\right]$ plus
+                                      // forcing terms. %Boundary
+                                      // values are applied in the
+                                      // same way as before, except
+                                      // that now we have to use the
                                       // BoundaryValuesV class:
       laplace_matrix.vmult (system_rhs, solution_u);
       system_rhs *= -theta * time_step;

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.