* quadrature rules themselves. The generalized support points are a set of
* points such that this quadrature can be performed with sufficient accuracy.
* The points needed are those of QGauss<sub>k+1</sub> on each face as well as
- * QGauss<sub>k</sub> in the interior of the cell (or none for
+ * QGauss<sub>k+1</sub> in the interior of the cell (or none for
* RT<sub>0</sub>).
*
*
* cell is also represented by a vector field, but again transforms
* differently, namely by the Piola transform
* @f[
- * \mathbf u(\mathbf x) = \frac{1}{\text{det}\;J(\mathbf x)}
- * J(\mathbf x) \hat{\mathbf u}(\mathbf x).
+ * \mathbf u(\mathbf x) = \frac{1}{\text{det}\;J(\hat{\mathbf x})}
+ * J(\hat{\mathbf x}) \hat{\mathbf u}(\hat{\mathbf x}).
* @f]
* </ul>
*
* J(\hat{\mathbf x})^{-1}.
* @f]
* <li> @p mapping_piola_gradient: it assumes $\mathbf u(\mathbf x) =
- * \frac{1}{\text{det}\;J(\mathbf x)} J(\mathbf x) \hat{\mathbf u}(\mathbf
- * x)$ so that
+ * \frac{1}{\text{det}\;J(\hat{\mathbf x})} J(\hat{\mathbf x}) \hat{\mathbf u}(\hat{\mathbf x})$ so that
* @f[
* \mathbf T(\mathbf x) =
- * \frac{1}{\text{det}\;J(\mathbf x)}
+ * \frac{1}{\text{det}\;J(\hat{\mathbf x})}
* J(\hat{\mathbf x}) \hat{\mathbf T}(\hat{\mathbf x})
* J(\hat{\mathbf x})^{-1}.
* @f]
* J_{jJ}(\hat{\mathbf x})^{-1} J_{kK}(\hat{\mathbf x})^{-1}.
* @f]
* <li> @p mapping_piola_hessian: it assumes $\mathbf u_i(\mathbf x) =
- * \frac{1}{\text{det}\;J(\mathbf x)} J_{iI}(\mathbf x) \hat{\mathbf
- * u}(\mathbf x)$ so that
+ * \frac{1}{\text{det}\;J(\hat{\mathbf x})} J_{iI}(\hat{\mathbf x}) \hat{\mathbf
+ * u}(\hat{\mathbf x})$ so that
* @f[
* \mathbf T_{ijk}(\mathbf x) =
- * \frac{1}{\text{det}\;J(\mathbf x)}
+ * \frac{1}{\text{det}\;J(\hat{\mathbf x})}
* J_{iI}(\hat{\mathbf x}) \hat{\mathbf T}_{IJK}(\hat{\mathbf x})
* J_{jJ}(\hat{\mathbf x})^{-1} J_{kK}(\hat{\mathbf x})^{-1}.
* @f]